ﻻ يوجد ملخص باللغة العربية
Bilocal holography is a constructive approach to the higher spin theory holographically dual to $O(N)$ vector models. In contrast to other approaches to bulk reconstruction, bilocal holography does not take input from the dual gravitational theory. The resulting map is a complete bulk/boundary mapping in that it maps the complete set of $O(N)$ invariant degrees of freedom in the CFT, to the complete set of higher spin degrees of freedom. After restricting to a suitable code subspace we demonstrate that bilocal holography naturally reproduces the quantum error correcting properties of holography and it gives a robust bulk (entanglement wedge) reconstruction. A gauge invariant entangled pair of CFT degrees of freedom are naturally smeared over a semicircle in the bulk spacetime, which is highly suggestive of bit threads. Finally, we argue that finite $N$ relations in the CFT, when interpreted in the dual AdS spacetime, can provide relations between degrees of freedom located near the boundary and degrees of freedom deep in the bulk.
We study thermalization in the holographic (1+1)-dimensional CFT after simultaneous generation of two high-energy excitations in the antipodal points on the circle. The holographic picture of such quantum quench is the creation of BTZ black hole from
I argue that a version of the quantum-corrected Ryu-Takayanagi formula holds in any quantum error-correcting code. I present this result as a series of theorems of increasing generality, with the final statement expressed in the language of operator-
The formalism of Holographic Space-time (HST) is a translation of the principles of Lorentzian geometry into the language of quantum information. Intervals along time-like trajectories, and their associated causal diamonds, completely characterize a
The typical model for measurement noise in quantum error correction is to randomly flip the binary measurement outcome. In experiments, measurements yield much richer information - e.g., continuous current values, discrete photon counts - which is th
Holographic quantum error-correcting codes have been proposed as toy models that describe key aspects of the AdS/CFT correspondence. In this work, we introduce a versatile framework of Majorana dimers capturing the intersection of stabilizer and Gaus