ﻻ يوجد ملخص باللغة العربية
I argue that a version of the quantum-corrected Ryu-Takayanagi formula holds in any quantum error-correcting code. I present this result as a series of theorems of increasing generality, with the final statement expressed in the language of operator-algebra quantum error correction. In AdS/CFT this gives a purely boundary interpretation of the formula. I also extend a recent theorem, which established entanglement-wedge reconstruction in AdS/CFT, when interpreted as a subsystem code, to the more general, and I argue more physical, case of subalgebra codes. For completeness, I include a self-contained presentation of the theory of von Neumann algebras on finite-dimensional Hilbert spaces, as well as the algebraic definition of entropy. The results confirm a close relationship between bulk gauge transformations, edge-modes/soft-hair on black holes, and the Ryu-Takayanagi formula. They also suggest a new perspective on the homology constraint, which basically is to get rid of it in a way that preserves the validity of the formula, but which removes any tension with the linearity of quantum mechanics. Moreover they suggest a boundary interpretation of the bit threads recently introduced by Freedman and Headrick.
We consider the special case of Random Tensor Networks (RTN) endowed with gauge symmetry constraints on each tensor. We compute the R`enyi entropy for such states and recover the Ryu-Takayanagi (RT) formula in the large bond regime. The result provid
We introduce group field theory networks as a generalization of spin networks and of (symmetric) random tensor networks and provide a statistical computation of the Renyi entropy for a bipartite network state using the partition function of a simple
We establish a dictionary between group field theory (thus, spin networks and random tensors) states and generalized random tensor networks. Then, we use this dictionary to compute the R{e}nyi entropy of such states and recover the Ryu-Takayanagi for
We study supersymmetric index of 4d $SU(N)$ $mathcal{N}=4$ super Yang-Mills theory on $S^1 times M_3$. We compute asymptotic behavior of the index in the limit of shrinking $S^1$ for arbitrary $N$ by a refinement of supersymmetric Cardy formula. The
The Ryu-Takayanagi formula provides the entanglement entropy of quantum field theory as an area of the minimal surface (Ryu-Takayangi surface) in a corresponding gravity theory. There are some attempts to understand the formula as a flow rather than