ترغب بنشر مسار تعليمي؟ اضغط هنا

The Ryu-Takayanagi Formula from Quantum Error Correction

141   0   0.0 ( 0 )
 نشر من قبل Daniel Harlow
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daniel Harlow




اسأل ChatGPT حول البحث

I argue that a version of the quantum-corrected Ryu-Takayanagi formula holds in any quantum error-correcting code. I present this result as a series of theorems of increasing generality, with the final statement expressed in the language of operator-algebra quantum error correction. In AdS/CFT this gives a purely boundary interpretation of the formula. I also extend a recent theorem, which established entanglement-wedge reconstruction in AdS/CFT, when interpreted as a subsystem code, to the more general, and I argue more physical, case of subalgebra codes. For completeness, I include a self-contained presentation of the theory of von Neumann algebras on finite-dimensional Hilbert spaces, as well as the algebraic definition of entropy. The results confirm a close relationship between bulk gauge transformations, edge-modes/soft-hair on black holes, and the Ryu-Takayanagi formula. They also suggest a new perspective on the homology constraint, which basically is to get rid of it in a way that preserves the validity of the formula, but which removes any tension with the linearity of quantum mechanics. Moreover they suggest a boundary interpretation of the bit threads recently introduced by Freedman and Headrick.

قيم البحث

اقرأ أيضاً

We consider the special case of Random Tensor Networks (RTN) endowed with gauge symmetry constraints on each tensor. We compute the R`enyi entropy for such states and recover the Ryu-Takayanagi (RT) formula in the large bond regime. The result provid es first of all an interesting new extension of the existing derivations of the RT formula for RTNs. Moreover, this extension of the RTN formalism brings it in direct relation with (tensorial) group field theories (and spin networks), and thus provides new tools for realizing the tensor network/geometry duality in the context of background independent quantum gravity, and for importing quantum gravity tools in tensor network research.
We introduce group field theory networks as a generalization of spin networks and of (symmetric) random tensor networks and provide a statistical computation of the Renyi entropy for a bipartite network state using the partition function of a simple interacting group field theory. The expectation value of the entanglement entropy is calculated by an expansion into stranded Feynman graphs and is shown to be captured by a Ryu- Takayanagi formula. For a simple interacting group field theory, we can prove the linear corrections, given by a polynomial perturbation of the Gaussian measure, to be negligible for a broad class of networks.
We establish a dictionary between group field theory (thus, spin networks and random tensors) states and generalized random tensor networks. Then, we use this dictionary to compute the R{e}nyi entropy of such states and recover the Ryu-Takayanagi for mula, in two different cases corresponding to two different truncations/approximations, suggested by the established correspondence.
79 - Masazumi Honda 2019
We study supersymmetric index of 4d $SU(N)$ $mathcal{N}=4$ super Yang-Mills theory on $S^1 times M_3$. We compute asymptotic behavior of the index in the limit of shrinking $S^1$ for arbitrary $N$ by a refinement of supersymmetric Cardy formula. The asymptotic behavior for the superconformal index case ($M_3 =S^3$) at large $N$ agrees with the Bekenstein-Hawking entropy of rotating electrically charged BPS black hole in $AdS_5$ via a Legendre transformation as recently shown in literature. We also find that the agreement formally persists for finite $N$ if we slightly modify the AdS/CFT dictionary between Newton constant and $N$. This implies an existence of non-renormalization property of the quantum black hole entropy. We also study the cases with other gauge groups and additional matters, and the orbifold $mathcal{N}=4$ super Yang-Mills theory. It turns out that the entropies of all the CFT examples in this paper are given by $2pi sqrt{Q_1 Q_2 +Q_1 Q_3 +Q_2 Q_3 -2c(J_1 +J_2 )} $ with charges $Q_{1,2,3}$, angular momenta $J_{1,2}$ and central charge $c$. The results for other $M_3$ make predictions to the gravity side.
The Ryu-Takayanagi formula provides the entanglement entropy of quantum field theory as an area of the minimal surface (Ryu-Takayangi surface) in a corresponding gravity theory. There are some attempts to understand the formula as a flow rather than as a surface. In this paper, we propose that null rays emitted from the AdS boundary can be regarded as such a flow. In particular, we show that in spherical symmetric static spacetimes with a negative cosmological constant, wave fronts of null geodesics from a point on the AdS boundary become extremal surfaces and therefore they can be regarded as the Ryu-Takayanagi surfaces. In addition, based on the viewpoint of flow, we propose a wave optical formula to calculate the holographic entanglement entropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا