ﻻ يوجد ملخص باللغة العربية
The erbium-doped Lithium niobate on insulator (Er:LNOI) platform has great promise in the application of telecommunication, microwave photonics, and quantum photonics due to its excellent electro-optic, piezo-electric, nonlinear nature as well as the gain characteristics in the telecommunication C-band. Here, we report a single-frequency Er:LNOI integrated laser based on dual-cavity structure. Facilitated by the Vernier effect and gain competition, the single-frequency laser can operate stably at 1531-nm wavelength with a 1484-nm pump laser. The output laser has a power of 0.31 uW, a linewidth of 1.2 MHz, and a side mode suppression ratio (SMSR) of 31 dB. Our work allows the direct integration of this laser source with existing LNOI components and paves the way for a fully integrated LNOI system.
Erbium-doped lithium niobate on insulator (Er:LNOI) is a promising platform for photonic integrated circuits as it adds gain to the LNOI system and enables on-chip lasers and amplifiers. A challenge for Er:LNOI laser is to increase its output power w
The commercialization of lithium niobate on insulator (LNOI) wafer has sparked significant on-chip photonic integration application due to its remarkable photonic, photoacoustic, electro-optic and piezoelectric nature. A variety of on-chip LNOI-based
Lithium niobate on insulator (LNOI), regarded as an important candidate platform for optical integration due to its excellent nonlinear, electro-optic and other physical properties, has become a research hotspot. Light source, as an essential compone
Lithium niobate on insulator (LNOI), as an emerging and promising optical integration platform, faces shortages of on-chip active devices including lasers and amplifiers. Here, we report the fabrication on-chip erbium-doped LNOI waveguide amplifiers
Erbium-doped lithium niobate high-Q microdisk cavities were fabricated in batches by UV exposure, inductively coupled plasma reactive ion etching and chemo-mechanical polishing. The stimulated emission at 1531.6 nm was observed under the pump of a na