ﻻ يوجد ملخص باللغة العربية
We investigate the timescale with which the IR luminosity decreases after a complete and rapid quenching of star formation using observations of local and high-redshift galaxies. From SED modelling, we derive the time since quenching of a subsample of 14 galaxies from the Herschel Reference Survey suffering from ram-pressure stripping due to the environment of the Virgo cluster and of a subsample of 7 rapidly quenched COSMOS galaxies selected through a state-of-the-art statistical method already tested on the determination of galaxies star formation history. Three out of the 7 COSMOS galaxies have an optical spectra with no emission line, confirming their quenched nature. Present physical properties of the two samples are obtained as well as the past L$_{IR}$ of these galaxies, just before their quenching, from the long-term SFH properties. This past L$_{IR}$ is shown to be consistent with the L$_{IR}$ of reference samples of normally star-forming galaxies with same $M_*$ and $z$ than each of our quenched galaxies. We put constraints on the present to past L$_{IR}$ ratio as a function of quenching time. The two samples probe different dynamical ranges in terms of quenching age with the HRS galaxies exhibiting longer timescales (0.2-3,Gyr) compared to the COSMOS one ($<100$,Myr). Assuming an exponential decrease of the L$_{IR}$ after quenching, the COSMOS quenched galaxies are consistent with short e-folding times less than a couple of hundreds of Myr while the properties of the HRS quenched galaxies are compatible with timescales of several hundreds of Myr. For the HRS sample, this result is consistent with ram pressure stripping due to the environment. For the COSMOS sample, different quenching processes are acting on short to intermediate timescales. Processes such as galaxy mergers, disk instabilities or environmental effects can produce such strong star formation variability.
We present the results of an observing program with the SCUBA bolometer array to measure the submillimetre (submm) dust continuum emission of 24 distant (z > 1) radio galaxies. We detected submm emission in 12 galaxies with S/N > 3, including 9 detec
We combine orbital information from N-body simulations with an analytic model for star formation quenching and SDSS observations to infer the differential effect of the group/cluster environment on star formation in satellite galaxies. We also consid
[ABRIDGED] We derive the dust properties for 753 local galaxies and examine how these relate to some of their physical properties. We model their global dust-SEDs, treated statistically as an ensemble within a hierarchical Bayesian dust-SED modeling
We explore the connection between dust and star formation, in the context of environmental effects on galaxy evolution. In particular, we exploit the susceptibility of dust to external processes to assess the influence of dense environment on star-fo
We have used near-ultraviolet (NUV) to mid-infrared (MIR) composite spectral energy distributions (SEDs) to simultaneously model the attenuated stellar and dust emission of 0.5 < z < 2.0 galaxies. These composite SEDs were previously constructed from