ترغب بنشر مسار تعليمي؟ اضغط هنا

Very Large Array imaging rules out precessing radio jets in three DES$-$SDSS-selected candidate periodic quasars

267   0   0.0 ( 0 )
 نشر من قبل Yu-Ching Chen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Periodic quasars have been suggested as candidates for hosting binary supermassive black holes (SMBHs), although alternative scenarios remain possible to explain the optical light curve periodicity. To test the alternative hypothesis of precessing radio jet, we present deep 6 GHz radio imaging conducted with NSFs Karl G. Jansky Very Large Array (VLA) in its C configuration for the three candidate periodic quasars, DES J024703.24$-$010032.0, DES J024944.66$-$000036.8, and DES J025214.67$-$002813.7. Our targets were selected based on their optical variability using 20-yr long multi-color light curves from the Dark Energy Survey (DES) and the Sloan Digital Sky Survey (SDSS). The new VLA observations show that all three periodic quasars are radio-quiet with the radio loudness parameters measured to be $Requiv f_{6,{rm cm}}/f_{{rm 2500}}$ of $lesssim$1.0$-$1.5 and the $k$-corrected luminosities $ u L_ u$[6 GHz] of $lesssim$5$-$21 $times$ 10$^{39}$ erg s$^{-1}$. They are in stark contrast to previously known periodic quasars proposed as binary SMBH candidates such as the blazar OJ 287 and PG1302$-$102. Our results rule out optical emission contributed from precessing radio jets as the origin of the optical periodicity in the three DES$-$SDSS-selected candidate periodic quasars. Future continued optical monitoring and complementary multi-wavelength observations are still needed to further test the binary SMBH hypothesis as well as other competing scenarios to explain the optical periodicity.

قيم البحث

اقرأ أيضاً

We perform simulations of the capabilities of the next generation Very Large Array to image stellar radio photospheres. For very large (in angle) stars, such as red supergiants within a few hundred parsecs, good imaging fidelity results can be obtain ed on radio photospheric structures at 38 GHz employing standard techniques, such as disk model fitting and subtraction, with hundreds of resolution elements over the star, even with just the ngVLA-classic baselines to 1000 km. Using the ngVLA Rev B plus long baseline configuration (with baselines out to 9000 km, August 2018), we find for main sequence stars within $sim$ 10 pc, the photospheres can be easily resolved at 85 GHz, with accurate measures of the mean brightness and size, and possibly imaging large surface structures, as might occur on e.g., active M dwarf stars. For more distant main sequence stars, we find that measurements of sizes and brightnesses can be made using disk model fitting to the u,v-data down to stellar diameters $sim$ 0.4 mas in a few hours. This size would include M0 V stars to a distance of 15 pc, A0 V stars to 60 pc, and Red Giants to 2.4 kpc. Based on the Hipparcos catalog, we estimate that there are at least 10,000 stars that will be resolved by the ngVLA. While the vast majority of these (95%) are giants or supergiants, there are still over 500 main sequence stars that can be resolved, with $sim$ 50 to 150 in each spectral type (besides O stars). Note that these are lower limits, since radio photospheres can be larger than optical, and the Hipparcos catalog might not be complete. Our initial look into the Gaia catalog suggests these numbers might be pessimistic by a factor few.
We present the discovery and subarcsecond localization of a new Fast Radio Burst with the Karl G. Jansky Very Large Array and realfast search system. The FRB was discovered on 2019 June 14 with a dispersion measure of 959 pc/cm3. This is the highest DM of any localized FRB and its measured burst fluence of 0.6 Jy ms is less than nearly all other FRBs. The source is not detected to repeat in 15 hours of VLA observing and 153 hours of CHIME/FRB observing. We describe a suite of statistical and data quality tests we used to verify the significance of the event and its localization precision. Follow-up optical/infrared photometry with Keck and Gemini associate the FRB to a pair of galaxies with $rm{r}sim23$ mag. The false-alarm rate for radio transients of this significance that are associated with a host galaxy is roughly $3times10^{-4} rm{hr}^{-1}$. The two putative host galaxies have similar photometric redshifts of $z_{rm{phot}}sim0.6$, but different colors and stellar masses. Comparing the host distance to that implied by the dispersion measure suggests a modest (~ 50 pc/cm3) electron column density associated with the FRB environment or host galaxy/galaxies.
A central compact object (CCO, e.g. a black hole) with an accretion disk has been suggested as the common central engine of various astrophysical phenomena, such as gamma-ray bursts (GRBs), tidal disruption events (TDEs) and active galactic nuclei (A GNs). A jet powered by such a system might precess due to the misalignment of the angular momenta of the CCO and accretion disk. Some quasi-periodic behaviors observed in the light curves of these phenomena can be well interpreted within the framework of a precessing jet model. In this paper, we study the emission polarization of precessing jets in the three kinds of phenomena. The polarization angle also shows a gradual change for the synchrotron emission in both the random and toroidal magnetic field configurations with the precessing jet, while it can only change abruptly by $90^circ$ for the non-precessing top-hat jet. Polarization properties are periodic due to the assumptions made in our model. The polarization observations are crucial to confirm the precession nature of jets in GRBs, TDEs and AGNs.
Galaxy mergers play an important role in the growth of galaxies and their supermassive black holes. Simulations suggest that tidal interactions could enhance black hole accretion, which can be tested by the fraction of binary active galactic nuclei ( AGNs) among galaxy mergers. But determining the fraction requires a statistical sample of binaries. We have identified kpc-scale binary AGNs directly from high-resolution radio imaging. Inside the 92 square deg covered by the high-resolution Very Large Array survey of the Sloan Digital Sky Survey (SDSS) Stripe 82 field, we identified 22 grade A and 30 grade B candidates of binary radio AGNs with angular separations less than 5 (10 kpc at z = 0.1). Eight of the candidates have optical spectra for both components from the SDSS spectroscopic surveys and our Keck program. Two grade B candidates are projected pairs, but the remaining six candidates are all compelling cases of binary AGNs based on either emission line ratios or the excess in radio power compared to the H-alpha-traced star formation rate. Only two of the six binaries were previously discovered by an optical spectroscopic search. Based on these results, we estimate that ~60% of our binary candidates would be confirmed once we obtain complete spectroscopic information. We conclude that wide-area high-resolution radio surveys offer an efficient method to identify large samples of binary AGNs. These radio-selected binary AGNs complement binaries identified at other wavelengths and are useful for understanding the triggering mechanisms of black hole accretion.
We report on the first millisecond timescale radio interferometric search for the new class of transient known as fast radio bursts (FRBs). We used the Very Large Array (VLA) for a 166-hour, millisecond imaging campaign to detect and precisely locali ze an FRB. We observed at 1.4 GHz and produced visibilities with 5 ms time resolution over 256 MHz of bandwidth. Dedispersed images were searched for transients with dispersion measures from 0 to 3000 pc/cm3. No transients were detected in observations of high Galactic latitude fields taken from September 2013 though October 2014. Observations of a known pulsar show that images typically had a thermal-noise limited sensitivity of 120 mJy/beam (8 sigma; Stokes I) in 5 ms and could detect and localize transients over a wide field of view. Our nondetection limits the FRB rate to less than 7e4/sky/day (95% confidence) above a fluence limit of 1.2 Jy-ms. Assuming a Euclidean flux distribution, the VLA rate limit is inconsistent with the published rate of Thornton et al. We recalculate previously published rates with a homogeneous consideration of the effects of primary beam attenuation, dispersion, pulse width, and sky brightness. This revises the FRB rate downward and shows that the VLA observations had a roughly 60% chance of detecting a typical FRB and that a 95% confidence constraint would require roughly 500 hours of similar VLA observing. Our survey also limits the repetition rate of an FRB to 2 times less than any known repeating millisecond radio transient.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا