ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization of Astrophysical Events with Precessing Jets

101   0   0.0 ( 0 )
 نشر من قبل Mi-Xiang Lan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A central compact object (CCO, e.g. a black hole) with an accretion disk has been suggested as the common central engine of various astrophysical phenomena, such as gamma-ray bursts (GRBs), tidal disruption events (TDEs) and active galactic nuclei (AGNs). A jet powered by such a system might precess due to the misalignment of the angular momenta of the CCO and accretion disk. Some quasi-periodic behaviors observed in the light curves of these phenomena can be well interpreted within the framework of a precessing jet model. In this paper, we study the emission polarization of precessing jets in the three kinds of phenomena. The polarization angle also shows a gradual change for the synchrotron emission in both the random and toroidal magnetic field configurations with the precessing jet, while it can only change abruptly by $90^circ$ for the non-precessing top-hat jet. Polarization properties are periodic due to the assumptions made in our model. The polarization observations are crucial to confirm the precession nature of jets in GRBs, TDEs and AGNs.

قيم البحث

اقرأ أيضاً

The classical nova YZ Reticuli was discovered in July 2020. Shortly after this we commenced a sustained, highly time-sampled coverage of its subsequent rapid evolution with time-resolved spectroscopy from the Global Jet Watch observatories. Its H-alp ha complex exhibited qualitatively different spectral signatures in the following weeks and months. We find that these H-alpha complexes are well described by the same five Gaussian emission components throughout the six months following eruption. These five components appear to constitute two pairs of lines, from jet outflows and an accretion disc, together with an additional central component. The correlated, symmetric patterns that these jet/accretion disc pairs exhibit suggest precession, probably in response to the large perturbation caused by the nova eruption. The jet and accretion disc signatures persist from the first ten days after brightening -- evidence that the accretion disc survived the disruption. We also compare another classical nova (V6568 Sgr) that erupted in July 2020 whose H-alpha complex can be described analogously, but with faster line-of-sight jet speeds exceeding 4000 km/s. We suggest that classical novae with higher mass white dwarfs bridge the gap between recurrent novae and classical novae such as YZ Reticuli.
153 - S. Nandi , A. Caproni , P. Kharb 2020
In this work, we report a radio galaxy with precessing jets, double-peaked emission lines and the presence of two compact radio components with a projected separation of ~6 parsec in Very Long Baseline Interferometry (VLBI) observations. The emission line peak separations could be suggesting the presence of a supermassive black hole binary (BBH) with a separation of 6.3 parsec, matching the VLBI results. The kinematic jet precession model applied to the jets of J1328+2751 indicates that if it is a BBH, the accretion disk of the primary black hole is not coplanar with the binary system orbit, making its jet precess under the effect of the torque produced by the secondary black hole. However, we find that the Bardeen-Petterson effect can also provide precession timescales compatible with the jet precession period inferred in this source. This source has previously been identified as a restarted double-double radio galaxy (DDRG). Our findings therefore have important ramifications for the nature of DDRGs in general.
Accretion onto black holes is an efficient mechanism in converting the gas mass-energy into energetic outputs as radiation, wind and jet. Tidal disruption events, in which stars are tidally torn apart and then accreted onto supermassive black holes, offer unique opportunities of studying the accretion physics as well as the wind and jet launching physics across different accretion regimes. In this review, we systematically describe and discuss the models that have been developed to study the accretion flows and jets in tidal disruption events. A good knowledge of these physics is not only needed for understanding the emissions of the observed events, but also crucial for probing the general relativistic space-time around black holes and the demographics of supermassive black holes via tidal disruption events.
Periodic quasars have been suggested as candidates for hosting binary supermassive black holes (SMBHs), although alternative scenarios remain possible to explain the optical light curve periodicity. To test the alternative hypothesis of precessing ra dio jet, we present deep 6 GHz radio imaging conducted with NSFs Karl G. Jansky Very Large Array (VLA) in its C configuration for the three candidate periodic quasars, DES J024703.24$-$010032.0, DES J024944.66$-$000036.8, and DES J025214.67$-$002813.7. Our targets were selected based on their optical variability using 20-yr long multi-color light curves from the Dark Energy Survey (DES) and the Sloan Digital Sky Survey (SDSS). The new VLA observations show that all three periodic quasars are radio-quiet with the radio loudness parameters measured to be $Requiv f_{6,{rm cm}}/f_{{rm 2500}}$ of $lesssim$1.0$-$1.5 and the $k$-corrected luminosities $ u L_ u$[6 GHz] of $lesssim$5$-$21 $times$ 10$^{39}$ erg s$^{-1}$. They are in stark contrast to previously known periodic quasars proposed as binary SMBH candidates such as the blazar OJ 287 and PG1302$-$102. Our results rule out optical emission contributed from precessing radio jets as the origin of the optical periodicity in the three DES$-$SDSS-selected candidate periodic quasars. Future continued optical monitoring and complementary multi-wavelength observations are still needed to further test the binary SMBH hypothesis as well as other competing scenarios to explain the optical periodicity.
In this chapter, we review some features of particle acceleration in astrophysical jets. We begin by describing four observational results relating to the topic, with particular emphasis on jets in active galactic nuclei and parallels between differe nt sources. We then discuss the ways in which particles can be accelerated to high energies in magnetised plasmas, focusing mainly on shock acceleration, second-order Fermi and magnetic reconnection; in the process, we attempt to shed some light on the basic conditions that must be met by any mechanism for the various observational constraints to be satisfied. We describe the limiting factors for the maximum particle energy and briefly discuss multimessenger signals from neutrinos and ultrahigh energy cosmic rays, before describing the journey of jet plasma from jet launch to cocoon with reference to the different acceleration mechanisms. We conclude with some general comments on the future outlook.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا