ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced anomalous Nernst effects in ferromagnetic materials driven by Weyl nodes

232   0   0.0 ( 0 )
 نشر من قبل Ilias Samathrakis
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on high-throughput first-principles calculations, we evaluated the anomalous Hall and anomalous Nernst conductivities of 266 transition-metal-based ferromagnetic compounds. Detailed analysis based on the symmetries and Berry curvatures reveals that the origin of singular-like behaviour of anomalous Hall/Nernst conductivities can be mostly attributed to the appearance of Weyl nodes or nodal lines located in the proximity of the Fermi energy, which can be further tailored by external stimuli such as biaxial strains and magnetic fields. Moreover, such calculations are enabled by the automated construction of Wannier functions with a success rate of 92%, which paves the way to perform accurate high-throughput evaluation of the physical properties such as the transport properties using the Wannier interpolation



قيم البحث

اقرأ أيضاً

Weyl semimetals are characterized by the presence of massless band dispersion in momentum space. When a Weyl semimetal meets magnetism, large anomalous transport properties emerge as a consequence of its topological nature. Here, using $in-situ$ spin - and angle-resolved photoelectron spectroscopy combined with $ab initio$ calculations, we visualize the spin-polarized Weyl cone and flat-band surface states of ferromagnetic Co$_2$MnGa films with full remanent magnetization. We demonstrate that the anomalous Hall and Nernst conductivities systematically grow when the magnetization-induced massive Weyl cone at a Lifshitz quantum critical point approaches the Fermi energy, until a high anomalous Nernst thermopower of $sim 6.2$ $rm mu V K^{-1}$ is realized at room temperature. Given this topological quantum state and full remanent magnetization, Co$_2$MnGa films are promising for realizing high efficiency heat flux and magnetic field sensing devices operable at room temperature and zero-field.
Antiferromagnets with tunable phase transitions are promising for future spintronics applications. We investigated spin-dependent transport properties of FeRh thin films, which show a temperature driven antiferromagnetic-to-ferromagnetic phase transi tion. Epitaxial FeRh films grown on MgO (001) substrates exhibit a clear magnetic and electronic phase transition. By performing anomalous Hall and anomalous Nernst effect measurements over a wide range of temperatures, we demonstrate that the thermally driven transition shows distinctly different transverse transport on both side of the phase transition. Particularly, a sign change of both anomalous Hall and Nernst signals is observed.
In metallic ferromagnets, the Berry curvature of underlying quasiparticles can cause an electric voltage perpendicular to both magnetization and an applied temperature gradient, a phenomenon called the anomalous Nernst effect (ANE). Here, we report t he observation of a giant ANE in the full-Heusler ferromagnet Co$_2$MnGa, reaching $S_{yx}sim -6$ $mu$V/K at room $T$, one order of magnitude larger than the maximum value reported for a magnetic conductor. With increasing temperature, the transverse thermoelectric conductivity or Peltier coefficient $alpha_{yx}$ shows a crossover between $T$-linear and $-T log(T)$ behaviors, indicating the violation of Mott formula at high temperatures. Our numerical and analytical calculations indicate that the proximity to a quantum Lifshitz transition between type-I and type-II magnetic Weyl fermions is responsible for the observed crossover properties and an enhanced $alpha_{yx}$. The $T$ dependence of $alpha_{yx}$ in experiments and numerical calculations can be understood in terms of a quantum critical scaling function predicted by the low energy effective theory over more than a decade of temperatures. Moreover, the observation of chiral anomaly or an unsaturated positive longitudinal magnetoconductance also provide evidence for the existence of Weyl fermions in Co$_2$MnGa.
112 - G. Y. Guo , Q. Niu , N. Nagaosa 2014
We study the anomalous Nernst effect (ANE) and anomalous Hall effect (AHE) in proximity-induced ferromagnetic palladium and platinum which is widely used in spintronics, within the Berry phase formalism based on the relativistic band structure calcul ations. We find that both the anomalous Hall ($sigma_{xy}^A$) and Nernst ($alpha_{xy}^A$) conductivities can be related to the spin Hall conductivity ($sigma_{xy}^S$) and band exchange-splitting ($Delta_{ex}$) by relations $sigma_{xy}^A =Delta_{ex}frac{e}{hbar}sigma_{xy}^S(E_F)$ and $alpha_{xy}^A = -frac{pi^2}{3}frac{k_B^2TDelta_{ex}}{hbar}sigma_{xy}^s(mu)$, respectively. In particular, these relations would predict that the $sigma_{xy}^A$ in the magnetized Pt (Pd) would be positive (negative) since the $sigma_{xy}^S(E_F)$ is positive (negative). Furthermore, both $sigma_{xy}^A$ and $alpha_{xy}^A$ are approximately proportional to the induced spin magnetic moment ($m_s$) because the $Delta_{ex}$ is a linear function of $m_s$. Using the reported $m_s$ in the magnetized Pt and Pd, we predict that the intrinsic anomalous Nernst conductivity (ANC) in the magnetic platinum and palladium would be gigantic, being up to ten times larger than, e.g., iron, while the intrinsic anomalous Hall conductivity (AHC) would also be significant.
The spin Nernst effect describes a transverse spin current induced by the longitudinal thermal gradient in a system with the spin-orbit coupling. Here we study the spin Nernst effect in a mesoscopic four-terminal cross-bar Weyl semimetal device under a perpendicular magnetic field. By using the tight-binding Hamiltonian combining with the nonequilibrium Greens function method, the three elements of the spin current in the transverse leads and then spin Nernst coefficients are obtained. The results show that the spin Nernst effect in the Weyl semimetal has the essential difference with the traditional one: The z direction spin currents is zero without the magnetic field while it appears under the magnetic field, and the x and y direction spin currents in the two transverse leads flows out or flows in together, in contrary to the traditional spin Nernst effect, in which the spin current is induced by the spin-orbit coupling and flows out from one lead and flows in on the other. So we call it the anomalous spin Nernst effect. In addition, we show that the Weyl semimetals have the center-reversal-type symmetry, the mirror-reversal-type symmetry and the electron-hole-type symmetry, which lead to the spin Nernst coefficients being odd function or even function of the Fermi energy, the magnetic field and the transverse terminals. Moreover, the spin Nernst effect in the Weyl semimetals are strongly anisotropic and its coefficients are strongly dependent on both the direction of thermal gradient and the direction of the transverse lead connection. Three non-equivalent connection modes (x-z, z-x and x-y modes) are studied in detail, and the spin Nernst coefficients for three different modes exhibit very different behaviors. These strongly anisotropic behaviors of the spin Nernst effect can be used as the characterization of magnetic Weyl semimetals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا