ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond Noise: Mitigating the Impact of Fine-grained Semantic Divergences on Neural Machine Translation

95   0   0.0 ( 0 )
 نشر من قبل Eleftheria Briakou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While it has been shown that Neural Machine Translation (NMT) is highly sensitive to noisy parallel training samples, prior work treats all types of mismatches between source and target as noise. As a result, it remains unclear how samples that are mostly equivalent but contain a small number of semantically divergent tokens impact NMT training. To close this gap, we analyze the impact of different types of fine-grained semantic divergences on Transformer models. We show that models trained on synthetic divergences output degenerated text more frequently and are less confident in their predictions. Based on these findings, we introduce a divergent-aware NMT framework that uses factors to help NMT recover from the degradation caused by naturally occurring divergences, improving both translation quality and model calibration on EN-FR tasks.



قيم البحث

اقرأ أيضاً

Detecting fine-grained differences in content conveyed in different languages matters for cross-lingual NLP and multilingual corpora analysis, but it is a challenging machine learning problem since annotation is expensive and hard to scale. This work improves the prediction and annotation of fine-grained semantic divergences. We introduce a training strategy for multilingual BERT models by learning to rank synthetic divergent examples of varying granularity. We evaluate our models on the Rationalized English-French Semantic Divergences, a new dataset released with this work, consisting of English-French sentence-pairs annotated with semantic divergence classes and token-level rationales. Learning to rank helps detect fine-grained sentence-level divergences more accurately than a strong sentence-level similarity model, while token-level predictions have the potential of further distinguishing between coarse and fine-grained divergences.
The patterns in which the syntax of different languages converges and diverges are often used to inform work on cross-lingual transfer. Nevertheless, little empirical work has been done on quantifying the prevalence of different syntactic divergences across language pairs. We propose a framework for extracting divergence patterns for any language pair from a parallel corpus, building on Universal Dependencies. We show that our framework provides a detailed picture of cross-language divergences, generalizes previous approaches, and lends itself to full automation. We further present a novel dataset, a manually word-aligned subset of the Parallel UD corpus in five languages, and use it to perform a detailed corpus study. We demonstrate the usefulness of the resulting analysis by showing that it can help account for performance patterns of a cross-lingual parser.
396 - Xiangpeng Wei , Heng Yu , Yue Hu 2020
As a sequence-to-sequence generation task, neural machine translation (NMT) naturally contains intrinsic uncertainty, where a single sentence in one language has multiple valid counterparts in the other. However, the dominant methods for NMT only obs erve one of them from the parallel corpora for the model training but have to deal with adequate variations under the same meaning at inference. This leads to a discrepancy of the data distribution between the training and the inference phases. To address this problem, we propose uncertainty-aware semantic augmentation, which explicitly captures the universal semantic information among multiple semantically-equivalent source sentences and enhances the hidden representations with this information for better translations. Extensive experiments on various translation tasks reveal that our approach significantly outperforms the strong baselines and the existing methods.
Previous domain adaptation research usually neglect the diversity in translation within a same domain, which is a core problem for adapting a general neural machine translation (NMT) model into a specific domain in real-world scenarios. One represent ative of such challenging scenarios is to deploy a translation system for a conference with a specific topic, e.g. computer networks or natural language processing, where there is usually extremely less resources due to the limited time schedule. To motivate a wide investigation in such settings, we present a real-world fine-grained domain adaptation task in machine translation (FDMT). The FDMT dataset (Zh-En) consists of four sub-domains of information technology: autonomous vehicles, AI education, real-time networks and smart phone. To be closer to reality, FDMT does not employ any in-domain bilingual training data. Instead, each sub-domain is equipped with monolingual data, bilingual dictionary and knowledge base, to encourage in-depth exploration of these available resources. Corresponding development set and test set are provided for evaluation purpose. We make quantitative experiments and deep analyses in this new setting, which benchmarks the fine-grained domain adaptation task and reveals several challenging problems that need to be addressed.
Modern neural machine translation (NMT) models employ a large number of parameters, which leads to serious over-parameterization and typically causes the underutilization of computational resources. In response to this problem, we empirically investi gate whether the redundant parameters can be reused to achieve better performance. Experiments and analyses are systematically conducted on different datasets and NMT architectures. We show that: 1) the pruned parameters can be rejuvenated to improve the baseline model by up to +0.8 BLEU points; 2) the rejuvenated parameters are reallocated to enhance the ability of modeling low-level lexical information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا