ﻻ يوجد ملخص باللغة العربية
Vision Transformers (ViT) have achieved remarkable success in large-scale image recognition. They split every 2D image into a fixed number of patches, each of which is treated as a token. Generally, representing an image with more tokens would lead to higher prediction accuracy, while it also results in drastically increased computational cost. To achieve a decent trade-off between accuracy and speed, the number of tokens is empirically set to 16x16. In this paper, we argue that every image has its own characteristics, and ideally the token number should be conditioned on each individual input. In fact, we have observed that there exist a considerable number of easy images which can be accurately predicted with a mere number of 4x4 tokens, while only a small fraction of hard ones need a finer representation. Inspired by this phenomenon, we propose a Dynamic Transformer to automatically configure a proper number of tokens for each input image. This is achieved by cascading multiple Transformers with increasing numbers of tokens, which are sequentially activated in an adaptive fashion at test time, i.e., the inference is terminated once a sufficiently confident prediction is produced. We further design efficient feature reuse and relationship reuse mechanisms across different components of the Dynamic Transformer to reduce redundant computations. Extensive empirical results on ImageNet, CIFAR-10, and CIFAR-100 demonstrate that our method significantly outperforms the competitive baselines in terms of both theoretical computational efficiency and practical inference speed.
While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used
Attention is sparse in vision transformers. We observe the final prediction in vision transformers is only based on a subset of most informative tokens, which is sufficient for accurate image recognition. Based on this observation, we propose a dynam
We present Multiscale Vision Transformers (MViT) for video and image recognition, by connecting the seminal idea of multiscale feature hierarchies with transformer models. Multiscale Transformers have several channel-resolution scale stages. Starting
Attention-based neural networks such as the Vision Transformer (ViT) have recently attained state-of-the-art results on many computer vision benchmarks. Scale is a primary ingredient in attaining excellent results, therefore, understanding a models s
Transformers, composed of multiple self-attention layers, hold strong promises toward a generic learning primitive applicable to different data modalities, including the recent breakthroughs in computer vision achieving state-of-the-art (SOTA) standa