ﻻ يوجد ملخص باللغة العربية
Crowdsourcing is regarded as one prospective solution for effective supervised learning, aiming to build large-scale annotated training data by crowd workers. Previous studies focus on reducing the influences from the noises of the crowdsourced annotations for supervised models. We take a different point in this work, regarding all crowdsourced annotations as gold-standard with respect to the individual annotators. In this way, we find that crowdsourcing could be highly similar to domain adaptation, and then the recent advances of cross-domain methods can be almost directly applied to crowdsourcing. Here we take named entity recognition (NER) as a study case, suggesting an annotator-aware representation learning model that inspired by the domain adaptation methods which attempt to capture effective domain-aware features. We investigate both unsupervised and supervised crowdsourcing learning, assuming that no or only small-scale expert annotations are available. Experimental results on a benchmark crowdsourced NER dataset show that our method is highly effective, leading to a new state-of-the-art performance. In addition, under the supervised setting, we can achieve impressive performance gains with only a very small scale of expert annotations.
Interpretable rationales for model predictions play a critical role in practical applications. In this study, we develop models possessing interpretable inference process for structured prediction. Specifically, we present a method of instance-based
Named Entity Recognition (NER) is a fundamental task in Natural Language Processing, concerned with identifying spans of text expressing references to entities. NER research is often focused on flat entities only (flat NER), ignoring the fact that en
Existing models for cross-domain named entity recognition (NER) rely on numerous unlabeled corpus or labeled NER training data in target domains. However, collecting data for low-resource target domains is not only expensive but also time-consuming.
Cross-domain named entity recognition (NER) models are able to cope with the scarcity issue of NER samples in target domains. However, most of the existing NER benchmarks lack domain-specialized entity types or do not focus on a certain domain, leadi
We study the open-domain named entity recognition (NER) problem under distant supervision. The distant supervision, though does not require large amounts of manual annotations, yields highly incomplete and noisy distant labels via external knowledge