ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact solution of network flow models with strong relaxations

94   0   0.0 ( 0 )
 نشر من قبل Vin\\'icius L. de Lima
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the solution of Mixed Integer Linear Programming (MILP) models with strong relaxations that are derived from Dantzig-Wolfe decompositions and allow a pseudo-polynomial pricing algorithm. We exploit their network-flow characterization and provide a framework based on column generation, reduced-cost variable-fixing, and a highly asymmetric branching scheme that allows us to take advantage of the potential of the current MILP solvers. We apply our framework to a variety of cutting and packing problems from the literature. The efficiency of the framework is proved by extensive computational experiments, in which a significant number of open instances could be solved to proven optimality for the first time.



قيم البحث

اقرأ أيضاً

The prize-collecting Steiner tree problem PCSTP is a well-known generalization of the classical Steiner tree problem in graphs, with a large number of practical applications. It attracted particular interest during the latest (11th) DIMACS Challenge and since then a number of PCSTP solvers have been introduced in the literature, some of which drastically improved on the best results achieved at the Challenge. The following article aims to further advance the state of the art. It introduces new techniques and algorithms for PCSTP, involving various forms of reductions of PCSTP instances to equivalent problems---which for example allows to decrease the problem size or to obtain a better IP formulation. Several of the new techniques and algorithms provably dominate previous approaches. Further theoretical properties of the new components, such as their complexity, are discussed, and their profound interaction is described. Finally, the new developments also translate into a strong computational performance: the resulting exact solver outperforms all previous approaches---both in terms of run-time and solvability---and can solve formerly intractable benchmark instances from the 11th DIMACS Challenge to optimality.
We consider optimization problems with polynomial inequality constraints in non-commuting variables. These non-commuting variables are viewed as bounded operators on a Hilbert space whose dimension is not fixed and the associated polynomial inequalit ies as semidefinite positivity constraints. Such problems arise naturally in quantum theory and quantum information science. To solve them, we introduce a hierarchy of semidefinite programming relaxations which generates a monotone sequence of lower bounds that converges to the optimal solution. We also introduce a criterion to detect whether the global optimum is reached at a given relaxation step and show how to extract a global optimizer from the solution of the corresponding semidefinite programming problem.
102 - Zhongyang Li 2019
We study the vertex classification problem on a graph whose vertices are in $k (kgeq 2)$ different communities, edges are only allowed between distinct communities, and the number of vertices in different communities are not necessarily equal. The ob servation is a weighted adjacency matrix, perturbed by a scalar multiple of the Gaussian Orthogonal Ensemble (GOE), or Gaussian Unitary Ensemble (GUE) matrix. For the exact recovery of the maximum likelihood estimation (MLE) with various weighted adjacency matrices, we prove sharp thresholds of the intensity $sigma$ of the Gaussian perturbation. These weighted adjacency matrices may be considered as natural models for the electric network. Surprisingly, these thresholds of $sigma$ do not depend on whether the sample space for MLE is restricted to such classifications that the number of vertices in each group is equal to the true value. In contrast to the $ZZ_2$-synchronization, a new complex version of the semi-definite programming (SDP) is designed to efficiently implement the community detection problem when the number of communities $k$ is greater than 2, and a common region (independent of $k$) for $sigma$ such that SDP exactly recovers the true classification is obtained.
Signomial programs (SPs) are optimization problems specified in terms of signomials, which are weighted sums of exponentials composed with linear functionals of a decision variable. SPs are non-convex optimization problems in general, and families of NP-hard problems can be reduced to SPs. In this paper we describe a hierarchy of convex relaxations to obtain successively tighter lower bounds of the optimal value of SPs. This sequence of lower bounds is computed by solving increasingly larger-sized relative entropy optimization problems, which are convex programs specified in terms of linear and relative entropy functions. Our approach relies crucially on the observation that the relative entropy function -- by virtue of its joint convexity with respect to both arguments -- provides a convex parametrization of certain sets of globally nonnegative signomials with efficiently computable nonnegativity certificates via the arithmetic-geometric-mean inequality. By appealing to representation theorems from real algebraic geometry, we show that our sequences of lower bounds converge to the global optima for broad classes of SPs. Finally, we also demonstrate the effectiveness of our methods via numerical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا