ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of quasi-exact fault-tolerant quantum computing and valence-bond-solid codes

79   0   0.0 ( 0 )
 نشر من قبل Dongsheng Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we develop the theory of quasi-exact fault-tolerant quantum (QEQ) computation, which uses qubits encoded into quasi-exact quantum error-correction codes (quasi codes). By definition, a quasi code is a parametric approximate code that can become exact by tuning its parameters. The model of QEQ computation lies in between the two well-known ones: the usual noisy quantum computation without error correction and the usual fault-tolerant quantum computation, but closer to the later. Many notions of exact quantum codes need to be adjusted for the quasi setting. Here we develop quasi error-correction theory using quantum instrument, the notions of quasi universality, quasi code distances, and quasi thresholds, etc. We find a wide class of quasi codes which are called valence-bond-solid codes, and we use them as concrete examples to demonstrate QEQ computation.

قيم البحث

اقرأ أيضاً

One-way quantum computation proceeds by sequentially measuring individual spins (qubits) in an entangled many-spin resource state. It remains a challenge, however, to efficiently produce such resource states. Is it possible to reduce the task of gene rating these states to simply cooling a quantum many-body system to its ground state? Cluster states, the canonical resource for one-way quantum computing, do not naturally occur as ground states of physical systems. This led to a significant effort to identify alternative resource states that appear as ground states in spin lattices. An appealing candidate is a valence-bond-solid state described by Affleck, Kennedy, Lieb, and Tasaki (AKLT). It is the unique, gapped ground state for a two-body Hamiltonian on a spin-1 chain, and can be used as a resource for one-way quantum computing. Here, we experimentally generate a photonic AKLT state and use it to implement single-qubit quantum logic gates.
We develop a scheme for fault-tolerant quantum computation based on asymmetric Bacon-Shor codes, which works effectively against highly biased noise dominated by dephasing. We find the optimal Bacon-Shor block size as a function of the noise strength and the noise bias, and estimate the logical error rate and overhead cost achieved by this optimal code. Our fault-tolerant gadgets, based on gate teleportation, are well suited for hardware platforms with geometrically local gates in two dimensions.
We analyze the latency of fault-tolerant quantum computing based on the 9-qubit Bacon-Shor code using a local, two-dimensional architecture. We embed the data qubits in a 7 by 7 array of physical qubits, where the extra qubits are used for ancilla pr eparation and qubit transportation by means of a SWAP chain. The latency is reduced with respect to a similar implementation using Steanes 7-qubit code (K. M. Svore, D. P. DiVincenzo, and B. M. Terhal, Quantum Information & Computation {bf 7}, 297 (2007)). Furthermore, the error threshold is also improved to $2.02 times 10^{-5}$, when memory errors are taken to be one tenth of the gate error rates.
We present a comprehensive architectural analysis for a fault-tolerant quantum computer based on cat codes concatenated with outer quantum error-correcting codes. For the physical hardware, we propose a system of acoustic resonators coupled to superc onducting circuits with a two-dimensional layout. Using estimated near-term physical parameters for electro-acoustic systems, we perform a detailed error analysis of measurements and gates, including CNOT and Toffoli gates. Having built a realistic noise model, we numerically simulate quantum error correction when the outer code is either a repetition code or a thin rectangular surface code. Our next step toward universal fault-tolerant quantum computation is a protocol for fault-tolerant Toffoli magic state preparation that significantly improves upon the fidelity of physical Toffoli gates at very low qubit cost. To achieve even lower overheads, we devise a new magic-state distillation protocol for Toffoli states. Combining these results together, we obtain realistic full-resource estimates of the physical error rates and overheads needed to run useful fault-tolerant quantum algorithms. We find that with around 1,000 superconducting circuit components, one could construct a fault-tolerant quantum computer that can run circuits which are intractable for classical supercomputers. Hardware with 32,000 superconducting circuit components, in turn, could simulate the Hubbard model in a regime beyond the reach of classical computing.
61 - Ashley M. Stephens 2014
Topological color codes defined by the 4.8.8 semiregular lattice feature geometrically local check operators and admit transversal implementation of the entire Clifford group, making them promising candidates for fault-tolerant quantum computation. R ecently, several efficient algorithms for decoding the syndrome of color codes were proposed. Here, we modify one of these algorithms to account for errors affecting the syndrome, applying it to the family of triangular 4.8.8 color codes encoding one logical qubit. For a three-dimensional bit-flip channel, we report a threshold error rate of 0.0208(1), compared with 0.0305(4) previously reported for an integer-program-based decoding algorithm. When we account for circuit details, this threshold is reduced to 0.00143(1) per gate, compared with 0.00672(1) per gate for the surface code under an identical noise model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا