ترغب بنشر مسار تعليمي؟ اضغط هنا

Fault-tolerant quantum computation with asymmetric Bacon-Shor codes

139   0   0.0 ( 0 )
 نشر من قبل John Preskill
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a scheme for fault-tolerant quantum computation based on asymmetric Bacon-Shor codes, which works effectively against highly biased noise dominated by dephasing. We find the optimal Bacon-Shor block size as a function of the noise strength and the noise bias, and estimate the logical error rate and overhead cost achieved by this optimal code. Our fault-tolerant gadgets, based on gate teleportation, are well suited for hardware platforms with geometrically local gates in two dimensions.



قيم البحث

اقرأ أيضاً

113 - John Napp , John Preskill 2012
We study the performance of Bacon-Shor codes, quantum subsystem codes which are well suited for applications to fault-tolerant quantum memory because the error syndrome can be extracted by performing two-qubit measurements. Assuming independent noise , we find the optimal block size in terms of the bit-flip error probability p_X and the phase error probability p_Z, and determine how the probability of a logical error depends on p_X and p_Z. We show that a single Bacon-Shor code block, used by itself without concatenation, can provide very effective protection against logical errors if the noise is highly biased (p_Z / p_X >> 1) and the physical error rate p_Z is a few percent or below. We also derive an upper bound on the logical error rate for the case where the syndrome data is noisy.
106 - Jihao Fan , Jun Li , Ya Wang 2021
We utilize a concatenation scheme to construct new families of quantum error correction codes that include the Bacon-Shor codes. We show that our scheme can lead to asymptotically good quantum codes while Bacon-Shor codes cannot. Further, the concate nation scheme allows us to derive quantum LDPC codes of distance $Omega(N^{2/3}/loglog N)$ which can improve Hastingss recent result [arXiv:2102.10030] by a polylogarithmic factor. Moreover, assisted by the Evra-Kaufman-Zemor distance balancing construction, our concatenation scheme can yield quantum LDPC codes with non-vanishing code rates and better minimum distance upper bound than the hypergraph product quantum LDPC codes. Finally, we derive a family of fast encodable and decodable quantum concatenated codes with parameters ${Q}=[[N,Omega(sqrt{N}),Omega( sqrt{N})]]$ and they also belong to the Bacon-Shor codes. We show that ${Q}$ can be encoded very efficiently by circuits of size $O(N)$ and depth $O(sqrt{N})$, and can correct any adversarial error of weight up to half the minimum distance bound in $O(sqrt{N})$ time. To the best of our knowledge, they are the most powerful quantum codes for correcting so many adversarial errors in sublinear time by far.
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
184 - Rui Chao , Ben W. Reichardt 2017
Reliable qubits are difficult to engineer, but standard fault-tolerance schemes use seven or more physical qubits to encode each logical qubit, with still more qubits required for error correction. The large overhead makes it hard to experiment with fault-tolerance schemes with multiple encoded qubits. The 15-qubit Hamming code protects seven encoded qubits to distance three. We give fault-tolerant procedures for applying arbitrary Clifford operations on these encoded qubits, using only two extra qubits, 17 total. In particular, individual encoded qubits within the code block can be targeted. Fault-tolerant universal computation is possible with four extra qubits, 19 total. The procedures could enable testing more sophisticated protected circuits in small-scale quantum devices. Our main technique is to use gadgets to protect gates against correlated faults. We also take advantage of special code symmetries, and use pieceable fault tolerance.
We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprote cted gates. Under suitable conditions, fault-tolerant quantum circuits constructed from DD-protected gates can tolerate stronger noise, and have a lower overhead cost, than fault-tolerant circuits constructed from unprotected gates. Our accuracy estimates depend on the dynamics of the bath that couples to the quantum computer, and can be expressed either in terms of the operator norm of the baths Hamiltonian or in terms of the power spectrum of bath correlations; we explain in particular how the performance of recursively generated concatenated pulse sequences can be analyzed from either viewpoint. Our results apply to Hamiltonian noise models with limited spatial correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا