ترغب بنشر مسار تعليمي؟ اضغط هنا

G-Transformer for Document-level Machine Translation

111   0   0.0 ( 0 )
 نشر من قبل Guangsheng Bao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Document-level MT models are still far from satisfactory. Existing work extend translation unit from single sentence to multiple sentences. However, study shows that when we further enlarge the translation unit to a whole document, supervised training of Transformer can fail. In this paper, we find such failure is not caused by overfitting, but by sticking around local minima during training. Our analysis shows that the increased complexity of target-to-source attention is a reason for the failure. As a solution, we propose G-Transformer, introducing locality assumption as an inductive bias into Transformer, reducing the hypothesis space of the attention from target to source. Experiments show that G-Transformer converges faster and more stably than Transformer, achieving new state-of-the-art BLEU scores for both non-pretraining and pre-training settings on three benchmark datasets.



قيم البحث

اقرأ أيضاً

We show that Bayes rule provides an effective mechanism for creating document translation models that can be learned from only parallel sentences and monolingual documents---a compelling benefit as parallel documents are not always available. In our formulation, the posterior probability of a candidate translation is the product of the unconditional (prior) probability of the candidate output document and the reverse translation probability of translating the candidate output back into the source language. Our proposed model uses a powerful autoregressive language model as the prior on target language documents, but it assumes that each sentence is translated independently from the target to the source language. Crucially, at test time, when a source document is observed, the document language model prior induces dependencies between the translations of the source sentences in the posterior. The models independence assumption not only enables efficient use of available data, but it additionally admits a practical left-to-right beam-search algorithm for carrying out inference. Experiments show that our model benefits from using cross-sentence context in the language model, and it outperforms existing document translation approaches.
Neural machine translation (NMT) is nowadays commonly applied at the subword level, using byte-pair encoding. A promising alternative approach focuses on character-level translation, which simplifies processing pipelines in NMT considerably. This app roach, however, must consider relatively longer sequences, rendering the training process prohibitively expensive. In this paper, we discuss a novel, Transformer-based approach, that we compare, both in speed and in quality to the Transformer at subword and character levels, as well as previously developed character-level models. We evaluate our models on 4 language pairs from WMT15: DE-EN, CS-EN, FI-EN and RU-EN. The proposed novel architecture can be trained on a single GPU and is 34% percent faster than the character-level Transformer; still, the obtained results are at least on par with it. In addition, our proposed model outperforms the subword-level model in FI-EN and shows close results in CS-EN. To stimulate further research in this area and close the gap with subword-level NMT, we make all our code and models publicly available.
Document-level machine translation conditions on surrounding sentences to produce coherent translations. There has been much recent work in this area with the introduction of custom model architectures and decoding algorithms. This paper presents a s ystematic comparison of selected approaches from the literature on two benchmarks for which document-level phenomena evaluation suites exist. We find that a simple method based purely on back-translating monolingual document-level data performs as well as much more elaborate alternatives, both in terms of document-level metrics as well as human evaluation.
Previous works have shown that contextual information can improve the performance of neural machine translation (NMT). However, most existing document-level NMT methods only consider a few number of previous sentences. How to make use of the whole do cument as global contexts is still a challenge. To address this issue, we hypothesize that a document can be represented as a graph that connects relevant contexts regardless of their distances. We employ several types of relations, including adjacency, syntactic dependency, lexical consistency, and coreference, to construct the document graph. Then, we incorporate both source and target graphs into the conventional Transformer architecture with graph convolutional networks. Experiments on various NMT benchmarks, including IWSLT English--French, Chinese-English, WMT English--German and Opensubtitle English--Russian, demonstrate that using document graphs can significantly improve the translation quality. Extensive analysis verifies that the document graph is beneficial for capturing discourse phenomena.
The Transformer architecture is widely used for machine translation tasks. However, its resource-intensive nature makes it challenging to implement on constrained embedded devices, particularly where available hardware resources can vary at run-time. We propose a dynamic machine translation model that scales the Transformer architecture based on the available resources at any particular time. The proposed approach, Dynamic-HAT, uses a HAT SuperTransformer as the backbone to search for SubTransformers with different accuracy-latency trade-offs at design time. The optimal SubTransformers are sampled from the SuperTransformer at run-time, depending on latency constraints. The Dynamic-HAT is tested on the Jetson Nano and the approach uses inherited SubTransformers sampled directly from the SuperTransformer with a switching time of <1s. Using inherited SubTransformers results in a BLEU score loss of <1.5% because the SubTransformer configuration is not retrained from scratch after sampling. However, to recover this loss in performance, the dimensions of the design space can be reduced to tailor it to a family of target hardware. The new reduced design space results in a BLEU score increase of approximately 1% for sub-optimal models from the original design space, with a wide range for performance scaling between 0.356s - 1.526s for the GPU and 2.9s - 7.31s for the CPU.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا