ﻻ يوجد ملخص باللغة العربية
Automatically generating medical reports for retinal images is one of the promising ways to help ophthalmologists reduce their workload and improve work efficiency. In this work, we propose a new context-driven encoding network to automatically generate medical reports for retinal images. The proposed model is mainly composed of a multi-modal input encoder and a fused-feature decoder. Our experimental results show that our proposed method is capable of effectively leveraging the interactive information between the input image and context, i.e., keywords in our case. The proposed method creates more accurate and meaningful reports for retinal images than baseline models and achieves state-of-the-art performance. This performance is shown in several commonly used metrics for the medical report generation task: BLEU-avg (+16%), CIDEr (+10.2%), and ROUGE (+8.6%).
Medical image captioning automatically generates a medical description to describe the content of a given medical image. A traditional medical image captioning model creates a medical description only based on a single medical image input. Hence, an
Real-time image captioning, along with adequate precision, is the main challenge of this research field. The present work, Multiple Transformers for Self-Attention Mechanism (MTSM), utilizes multiple transformers to address these problems. The propos
Standard image captioning tasks such as COCO and Flickr30k are factual, neutral in tone and (to a human) state the obvious (e.g., a man playing a guitar). While such tasks are useful to verify that a machine understands the content of an image, they
The ability to quickly learn from a small quantity oftraining data widens the range of machine learning applications. In this paper, we propose a data-efficient image captioning model, VisualGPT, which leverages the linguistic knowledge from a large
Image captioning is a challenging computer vision task, which aims to generate a natural language description of an image. Most recent researches follow the encoder-decoder framework which depends heavily on the previous generated words for the curre