ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum interference control of perfect photon absorption in a three-level atom-cavity system

142   0   0.0 ( 0 )
 نشر من قبل Miao-Di Guo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Miaodi Guo




اسأل ChatGPT حول البحث

We analyze a scheme for controlling coherent photon absorption by cavity electromagnetically induced transparency (EIT) in a three-level atom-cavity system. Coherent perfect absorption (CPA) can occur when time-reversed symmetry of lasing process is obtained and destructive interference happens at the cavity interfaces. Generally, the frequency range of CPA is dependent on the decay rates of cavity mirrors. When the control laser is settled, the smaller cavity decay rate causes the wider frequency range of CPA, and the input intensity is larger to satisfy CPA condition for a given frequency. While the cavity parameters are determined, Rabi frequency of the control laser has little effect on the frequency range of CPA. However, with EIT-type quantum interference, the CPA mode is tunable by the control laser. This means the CPA with given frequency and intensity of an input laser can be manipulated as the coherent non-perfect absorption (CNPA). Moreover, with the relative phase of input probe lasers, the probe fields can be perfectly transmitted and/or reflected. Therefore, the system can be used as a controllable coherent perfect absorber or transmitter and/or reflector, and our work may have practical applications in optical logic devices.

قيم البحث

اقرأ أيضاً

Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of the photons [1,2] is a promising platform for investigations of quantum mechanical properties of motion of macroscopic bodies and thereby the limits of quantum mechanics [3,4]. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength towards the scale of the cavity damping rate. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities [5-8]. Addressing these issues, here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiation pressure interaction energy by six orders of magnitude, allowing to approach the strong coupling regime, where a single quantum of vibrations shifts the cavity frequency by more than its linewidth. We observe nonlinear phenomena at single-photon energies, such as an enhanced damping due to the two-level system. This work opens up nonlinear cavity optomechanics as a plausible tool for the study of quantum properties of motion.
121 - Lei Tan , Li-Wei Liu , Yan-Fen Sun 2010
A theoretical study is carried out for the cavity cooling of a $Lambda$-type three level atom in a high-finesse optical cavity with a weakly driven field. Analytical expressions for the friction, diffusion coefficients and the equilibrium temperature s are obtained by using the Heisenberg equations, then they are calculated numerically and shown graphically as a function of controlling parameters. For a suitable choice of these parameters, the dynamics of the cavity field interaction with the $Lambda$-type three-level atom introduces a sisyphus cooling mechanism yielding lower temperatures below the Doppler limit and allowing larger cooling rate, avoiding the problems induced by spontaneous emission.
We report Ramsey interference in the excitonic population of a negatively charged quantum dot revealing the coherence of the state in the limit where radiative decay is dominant. Our experiments show that the decay time of the Ramsey interference is limited by the spectral width of the transition. Applying a vertical magnetic field induces Zeeman split transitions that can be addressed by changing the laser detuning to reveal 2, 3 and 4 level system behaviour. We show that under finite field the phase-sensitive control of two optical pulses from a single laser can be used to prepare both population and spin qubits simultaneously.
The quantum dynamics of a strongly driven, strongly coupled single-atom-cavity system is studied by evaluating time-dependent second- and third-order correlations of the emitted photons. The coherent energy exchange, first, between the atom and the c avity mode, and second, between the atom-cavity system and the driving laser, is observed. Three-photon detections show an asymmetry in time, a consequence of the breakdown of detailed balance. The results are in good agreement with theory and are a first step towards the control of a quantum trajectory at larger driving strength.
Sources of quantum light, in particular correlated photon pairs that are indistinguishable in all degrees of freedom, are the fundamental resource that enables continuous-variable quantum computation and paradigms such as Gaussian boson sampling. Nan ophotonic systems offer a scalable platform for implementing sources of indistinguishable correlated photon pairs. However, such sources have so far relied on the use of a single component, such as a single waveguide or a ring resonator, which offers limited ability to tune the spectral and temporal correlations between photons. Here, we demonstrate the use of a topological photonic system comprising a two-dimensional array of ring resonators to generate indistinguishable photon pairs with dynamically tunable spectral and temporal correlations. Specifically, we realize dual-pump spontaneous four-wave mixing in this array of silicon ring resonators that exhibits topological edge states. We show that the linear dispersion of the edge states over a broad bandwidth allows us to tune the correlations, and therefore, quantum interference between photons by simply tuning the two pump frequencies in the edge band. Furthermore, we demonstrate energy-time entanglement between generated photons. We also show that our topological source is inherently protected against fabrication disorders. Our results pave the way for scalable and tunable sources of squeezed light that are indispensable for quantum information processing using continuous variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا