ﻻ يوجد ملخص باللغة العربية
Sources of quantum light, in particular correlated photon pairs that are indistinguishable in all degrees of freedom, are the fundamental resource that enables continuous-variable quantum computation and paradigms such as Gaussian boson sampling. Nanophotonic systems offer a scalable platform for implementing sources of indistinguishable correlated photon pairs. However, such sources have so far relied on the use of a single component, such as a single waveguide or a ring resonator, which offers limited ability to tune the spectral and temporal correlations between photons. Here, we demonstrate the use of a topological photonic system comprising a two-dimensional array of ring resonators to generate indistinguishable photon pairs with dynamically tunable spectral and temporal correlations. Specifically, we realize dual-pump spontaneous four-wave mixing in this array of silicon ring resonators that exhibits topological edge states. We show that the linear dispersion of the edge states over a broad bandwidth allows us to tune the correlations, and therefore, quantum interference between photons by simply tuning the two pump frequencies in the edge band. Furthermore, we demonstrate energy-time entanglement between generated photons. We also show that our topological source is inherently protected against fabrication disorders. Our results pave the way for scalable and tunable sources of squeezed light that are indispensable for quantum information processing using continuous variables.
Quantum light sources are characterized by their distinctive statistical distribution of photons. For example, single photons and correlated photon pairs exhibit antibunching and reduced variance in the number distribution that is impossible with cla
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena. Demonstrations of such processes have, however, been limited to probabilistic sources, for instance, spontaneous parametric down-conversion or
Optical-coherence tomography (OCT) is a technique that employs light in order to measure the internal structure of semi-transparent, e.g. biological, samples. It is based on the interference pattern of low-coherence light. Quantum-OCT (QOCT), instead
Spectrally correlated photon pairs can be used to improve performance of long range fiber based quantum communication protocols. We present a source based on spontaneous parametric down-conversion producing polarization entangled photons without spec
Light shaping facilitates the preparation and detection of optical states and underlies many applications in communications, computing, and imaging. In this Letter, we generalize light shaping to the quantum domain. We show that patterns of phase mod