ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Observation of Localized Interfacial Phonon Modes

392   0   0.0 ( 0 )
 نشر من قبل Zhe Cheng
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interfaces impede heat flow in micro/nanostructured systems. Conventional theories for interfacial thermal transport were derived based on bulk phonon properties of the materials making up the interface without explicitly considering the atomistic interfacial details, which are found critical to correctly describing thermal boundary conductance (TBC). Recent theoretical studies predicted the existence of localized phonon modes at the interface which can play an important role in understanding interfacial thermal transport. However, experimental validation is still lacking. Through a combination of Raman spectroscopy and high-energy resolution electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope, we report the first experimental observation of localized interfacial phonon modes at ~12 THz at a high-quality epitaxial Si-Ge interface. These modes are further confirmed using molecular dynamics simulations with a high-fidelity neural network interatomic potential, which also yield TBC agreeing well with that measured from time-domain thermoreflectance (TDTR) experiments. Simulations find that the interfacial phonon modes have obvious contribution to the total TBC. Our findings may significantly contribute to the understanding of interfacial thermal transport physics and have impact on engineering TBC at interfaces in applications such as electronics thermal management and thermoelectric energy conversion.



قيم البحث

اقرأ أيضاً

124 - Gang Wu , Jian Zhou , 2007
The radial-breathing-like phonon modes (RBLMs) of the double-walled carbon nanotubes are studied in a simple analytical model, in which the interaction force constants (FCs) can be obtained analytically from the continuous model. The RBLMs frequencie s are obtained by solving the dynamical matrix, and their relationship with the tube radii can be obtained analytically, offering a powerful experimental tool for determining precisely the radii of the multi-walled carbon nanotubes.
Higher-order topological insulators are a new class of topological phases of matter, originally conceived for electrons in solids. It has been suggested that $mathbb{Z}_N$ Berry phase (Berry phase quantized into $2pi/N$) is a useful tool to character ize the symmetry protected topological states, while the experimental evidence is still elusive. Recently, topolectrical circuits have emerged as a simple yet very powerful platform for studying topological physics that are challenging to realize in condensed matter systems. Here, we present the first experimental observation of second-order corner states characterized by $mathbb{Z}_3$ Berry phase in topolectrical circuits. We demonstrate theoretically and experimentally that the localized second-order topological states are protected by a generalized chiral symmetry of tripartite lattices, and they are pinned to zero energy. By introducing extra capacitors within sublattices in the circuit, we are able to examine the robustness of the zero modes against both chiral-symmetry conserving and breaking disturbances. Our work paves the way for testing exotic topological band theory by electrical-circuit experiments.
91 - Chi Zhang , Inhee Lee , Yong Pu 2021
We demonstrate a high-quality spin orbit torque nano-oscillator comprised of spin wave modes confined by the magnetic field by the strongly inhomogeneous dipole field of a nearby micromagnet. This approach enables variable spatial confinement and sys tematic tuning of magnon spectrum and spectral separations for studying the impact of multi-mode interactions on auto-oscillations. We find these dipole field-localized spin wave modes exhibit good characteristic properties as auto-oscillators--narrow linewidth and large amplitude--while persisting up to room temperature. We find that the linewidth of the lowest-lying localized mode is approximately proportional to temperature in good agreement with theoretical analysis of the impact of thermal fluctuations. This demonstration of a clean oscillator with tunable properties provides a powerful tool for understanding the fundamental limitations and linewidth contributions to improve future spin-Hall oscillators.
We investigated the frequency spectra and field distributions of a dielectric square resonator in a microwave experiment. Since such systems cannot be treated analytically, the experimental studies of their properties are indispensable. The momentum representation of the measured field distributions shows that all resonant modes are localized on specific classical tori of the square billiard. Based on these observations a semiclassical model was developed. It shows excellent agreement with all but a single class of measured field distributions that will be treated separately.
ReS$_2$ has recently emerged as a new member in the rapidly growing family of two-dimensional materials. Unlike MoS$_2$ or WSe$_2$, the optical and electrical properties of ReS$_2$ are not isotropic due to the reduced symmetry of the crystal. Here, w e present layer-dependent Raman measurements of ReS$_2$ samples ranging from monolayers to ten layers in the ultralow frequency regime. We observe layer breathing and shear modes which allow for easy assignment of the number of layers. Polarization-dependent measurements give further insight into the crystal structure and reveal an energetic shift of the shear mode which stems from the in-plane anisotropy of the shear modulus in this material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا