ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding Bandits with Graph Feedback

62   0   0.0 ( 0 )
 نشر من قبل Houshuang Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Houshuang Chen




اسأل ChatGPT حول البحث

The bandit problem with graph feedback, proposed in [Mannor and Shamir, NeurIPS 2011], is modeled by a directed graph $G=(V,E)$ where $V$ is the collection of bandit arms, and once an arm is triggered, all its incident arms are observed. A fundamental question is how the structure of the graph affects the min-max regret. We propose the notions of the fractional weak domination number $delta^*$ and the $k$-packing independence number capturing upper bound and lower bound for the regret respectively. We show that the two notions are inherently connected via aligning them with the linear program of the weakly dominating set and its dual -- the fractional vertex packing set respectively. Based on this connection, we utilize the strong duality theorem to prove a general regret upper bound $Oleft(left( delta^*log |V|right)^{frac{1}{3}}T^{frac{2}{3}}right)$ and a lower bound $Omegaleft(left(delta^*/alpharight)^{frac{1}{3}}T^{frac{2}{3}}right)$ where $alpha$ is the integrality gap of the dual linear program. Therefore, our bounds are tight up to a $left(log |V|right)^{frac{1}{3}}$ factor on graphs with bounded integrality gap for the vertex packing problem including trees and graphs with bounded degree. Moreover, we show that for several special families of graphs, we can get rid of the $left(log |V|right)^{frac{1}{3}}$ factor and establish optimal regret.



قيم البحث

اقرأ أيضاً

We introduce the dueling teams problem, a new online-learning setting in which the learner observes noisy comparisons of disjoint pairs of $k$-sized teams from a universe of $n$ players. The goal of the learner is to minimize the number of duels requ ired to identify, with high probability, a Condorcet winning team, i.e., a team which wins against any other disjoint team (with probability at least $1/2$). Noisy comparisons are linked to a total order on the teams. We formalize our model by building upon the dueling bandits setting (Yue et al.2012) and provide several algorithms, both for stochastic and deterministic settings. For the stochastic setting, we provide a reduction to the classical dueling bandits setting, yielding an algorithm that identifies a Condorcet winning team within $mathcal{O}((n + k log (k)) frac{max(loglog n, log k)}{Delta^2})$ duels, where $Delta$ is a gap parameter. For deterministic feedback, we additionally present a gap-independent algorithm that identifies a Condorcet winning team within $mathcal{O}(nklog(k)+k^5)$ duels.
Bandits with Knapsacks (BwK) is a general model for multi-armed bandits under supply/budget constraints. While worst-case regret bounds for BwK are well-understood, we present three results that go beyond the worst-case perspective. First, we provide upper and lower bounds which amount to a full characterization for logarithmic, instance-dependent regret rates. Second, we consider simple regret in BwK, which tracks algorithms performance in a given round, and prove that it is small in all but a few rounds. Third, we provide a general reduction from BwK to bandits which takes advantage of some known helpful structure, and apply this reduction to combinatorial semi-bandits, linear contextual bandits, and multinomial-logit bandits. Our results build on the BwK algorithm from citet{AgrawalDevanur-ec14}, providing new analyses thereof.
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical pe rformance compared to the state-of-the-art methods. However, many questions regarding its theoretical performance remained open. In this paper, we design and analyze a generalization of Thompson Sampling algorithm for the stochastic contextual multi-armed bandit problem with linear payoff functions, when the contexts are provided by an adaptive adversary. This is among the most important and widely studi
We propose a generalization of the best arm identification problem in stochastic multi-armed bandits (MAB) to the setting where every pull of an arm is associated with delayed feedback. The delay in feedback increases the effective sample complexity of standard algorithms, but can be offset if we have access to partial feedback received before a pull is completed. We propose a general framework to model the relationship between partial and delayed feedback, and as a special case we introduce efficient algorithms for settings where the partial feedback are biased or unbiased estimators of the delayed feedback. Additionally, we propose a novel extension of the algorithms to the parallel MAB setting where an agent can control a batch of arms. Our experiments in real-world settings, involving policy search and hyperparameter optimization in computational sustainability domains for fast charging of batteries and wildlife corridor construction, demonstrate that exploiting the structure of partial feedback can lead to significant improvements over baselines in both sequential and parallel MAB.
Dense subgraph discovery aims to find a dense component in edge-weighted graphs. This is a fundamental graph-mining task with a variety of applications and thus has received much attention recently. Although most existing methods assume that each ind ividual edge weight is easily obtained, such an assumption is not necessarily valid in practice. In this paper, we introduce a novel learning problem for dense subgraph discovery in which a learner queries edge subsets rather than only single edges and observes a noisy sum of edge weights in a queried subset. For this problem, we first propose a polynomial-time algorithm that obtains a nearly-optimal solution with high probability. Moreover, to deal with large-sized graphs, we design a more scalable algorithm with a theoretical guarantee. Computational experiments using real-world graphs demonstrate the effectiveness of our algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا