ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting Backdoor in Deep Neural Networks via Intentional Adversarial Perturbations

375   0   0.0 ( 0 )
 نشر من قبل Mingfu Xue
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent researches show that deep learning model is susceptible to backdoor attacks. Many defenses against backdoor attacks have been proposed. However, existing defense works require high computational overhead or backdoor attack information such as the trigger size, which is difficult to satisfy in realistic scenarios. In this paper, a novel backdoor detection method based on adversarial examples is proposed. The proposed method leverages intentional adversarial perturbations to detect whether an image contains a trigger, which can be applied in both the training stage and the inference stage (sanitize the training set in training stage and detect the backdoor instances in inference stage). Specifically, given an untrusted image, the adversarial perturbation is added to the image intentionally. If the prediction of the model on the perturbed image is consistent with that on the unperturbed image, the input image will be considered as a backdoor instance. Compared with most existing defense works, the proposed adversarial perturbation based method requires low computational resources and maintains the visual quality of the images. Experimental results show that, the backdoor detection rate of the proposed defense method is 99.63%, 99.76% and 99.91% on Fashion-MNIST, CIFAR-10 and GTSRB datasets, respectively. Besides, the proposed method maintains the visual quality of the image as the l2 norm of the added perturbation are as low as 2.8715, 3.0513 and 2.4362 on Fashion-MNIST, CIFAR-10 and GTSRB datasets, respectively. In addition, it is also demonstrated that the proposed method can achieve high defense performance against backdoor attacks under different attack settings (trigger transparency, trigger size and trigger pattern). Compared with the existing defense work (STRIP), the proposed method has better detection performance on all the three datasets, and is more efficient than STRIP.



قيم البحث

اقرأ أيضاً

Deep neural networks are being widely deployed for many critical tasks due to their high classification accuracy. In many cases, pre-trained models are sourced from vendors who may have disrupted the training pipeline to insert Trojan behaviors into the models. These malicious behaviors can be triggered at the adversarys will and hence, cause a serious threat to the widespread deployment of deep models. We propose a method to verify if a pre-trained model is Trojaned or benign. Our method captures fingerprints of neural networks in the form of adversarial perturbations learned from the network gradients. Inserting backdoors into a network alters its decision boundaries which are effectively encoded in their adversarial perturbations. We train a two stream network for Trojan detection from its global ($L_infty$ and $L_2$ bounded) perturbations and the localized region of high energy within each perturbation. The former encodes decision boundaries of the network and latter encodes the unknown trigger shape. We also propose an anomaly detection method to identify the target class in a Trojaned network. Our methods are invariant to the trigger type, trigger size, training data and network architecture. We evaluate our methods on MNIST, NIST-Round0 and NIST-Round1 datasets, with up to 1,000 pre-trained models making this the largest study to date on Trojaned network detection, and achieve over 92% detection accuracy to set the new state-of-the-art.
319 - Alvin Chan , Yew-Soon Ong 2019
Deep learning models have recently shown to be vulnerable to backdoor poisoning, an insidious attack where the victim model predicts clean images correctly but classifies the same images as the target class when a trigger poison pattern is added. Thi s poison pattern can be embedded in the training dataset by the adversary. Existing defenses are effective under certain conditions such as a small size of the poison pattern, knowledge about the ratio of poisoned training samples or when a validated clean dataset is available. Since a defender may not have such prior knowledge or resources, we propose a defense against backdoor poisoning that is effective even when those prerequisites are not met. It is made up of several parts: one to extract a backdoor poison signal, detect poison target and base classes, and filter out poisoned from clean samples with proven guarantees. The final part of our defense involves retraining the poisoned model on a dataset augmented with the extracted poison signal and corrective relabeling of poisoned samples to neutralize the backdoor. Our approach has shown to be effective in defending against backdoor attacks that use both small and large-sized poison patterns on nine different target-base class pairs from the CIFAR10 dataset.
Recent studies have shown that DNNs can be compromised by backdoor attacks crafted at training time. A backdoor attack installs a backdoor into the victim model by injecting a backdoor pattern into a small proportion of the training data. At test tim e, the victim model behaves normally on clean test data, yet consistently predicts a specific (likely incorrect) target class whenever the backdoor pattern is present in a test example. While existing backdoor attacks are effective, they are not stealthy. The modifications made on training data or labels are often suspicious and can be easily detected by simple data filtering or human inspection. In this paper, we present a new type of backdoor attack inspired by an important natural phenomenon: reflection. Using mathematical modeling of physical reflection models, we propose reflection backdoor (Refool) to plant reflections as backdoor into a victim model. We demonstrate on 3 computer vision tasks and 5 datasets that, Refool can attack state-of-the-art DNNs with high success rate, and is resistant to state-of-the-art backdoor defenses.
Deep neural networks (DNNs) are known vulnerable to backdoor attacks, a training time attack that injects a trigger pattern into a small proportion of training data so as to control the models prediction at the test time. Backdoor attacks are notably dangerous since they do not affect the models performance on clean examples, yet can fool the model to make incorrect prediction whenever the trigger pattern appears during testing. In this paper, we propose a novel defense framework Neural Attention Distillation (NAD) to erase backdoor triggers from backdoored DNNs. NAD utilizes a teacher network to guide the finetuning of the backdoored student network on a small clean subset of data such that the intermediate-layer attention of the student network aligns with that of the teacher network. The teacher network can be obtained by an independent finetuning process on the same clean subset. We empirically show, against 6 state-of-the-art backdoor attacks, NAD can effectively erase the backdoor triggers using only 5% clean training data without causing obvious performance degradation on clean examples. Code is available in https://github.com/bboylyg/NAD.
Recent years have witnessed unprecedented success achieved by deep learning models in the field of computer vision. However, their vulnerability towards carefully crafted adversarial examples has also attracted the increasing attention of researchers . Motivated by the observation that adversarial examples are due to the non-robust feature learned from the original dataset by models, we propose the concepts of salient feature(SF) and trivial feature(TF). The former represents the class-related feature, while the latter is usually adopted to mislead the model. We extract these two features with coupled generative adversarial network model and put forward a novel detection and defense method named salient feature extractor (SFE) to defend against adversarial attacks. Concretely, detection is realized by separating and comparing the difference between SF and TF of the input. At the same time, correct labels are obtained by re-identifying SF to reach the purpose of defense. Extensive experiments are carried out on MNIST, CIFAR-10, and ImageNet datasets where SFE shows state-of-the-art results in effectiveness and efficiency compared with baselines. Furthermore, we provide an interpretable understanding of the defense and detection process.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا