ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-Lingual Abstractive Summarization with Limited Parallel Resources

119   0   0.0 ( 0 )
 نشر من قبل Yu Bai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Parallel cross-lingual summarization data is scarce, requiring models to better use the limited available cross-lingual resources. Existing methods to do so often adopt sequence-to-sequence networks with multi-task frameworks. Such approaches apply multiple decoders, each of which is utilized for a specific task. However, these independent decoders share no parameters, hence fail to capture the relationships between the discrete phrases of summaries in different languages, breaking the connections in order to transfer the knowledge of the high-resource languages to low-resource languages. To bridge these connections, we propose a novel Multi-Task framework for Cross-Lingual Abstractive Summarization (MCLAS) in a low-resource setting. Employing one unified decoder to generate the sequential concatenation of monolingual and cross-lingual summaries, MCLAS makes the monolingual summarization task a prerequisite of the cross-lingual summarization (CLS) task. In this way, the shared decoder learns interactions involving alignments and summary patterns across languages, which encourages attaining knowledge transfer. Experiments on two CLS datasets demonstrate that our model significantly outperforms three baseline models in both low-resource and full-dataset scenarios. Moreover, in-depth analysis on the generated summaries and attention heads verifies that interactions are learned well using MCLAS, which benefits the CLS task under limited parallel resources.



قيم البحث

اقرأ أيضاً

We introduce WikiLingua, a large-scale, multilingual dataset for the evaluation of crosslingual abstractive summarization systems. We extract article and summary pairs in 18 languages from WikiHow, a high quality, collaborative resource of how-to gui des on a diverse set of topics written by human authors. We create gold-standard article-summary alignments across languages by aligning the images that are used to describe each how-to step in an article. As a set of baselines for further studies, we evaluate the performance of existing cross-lingual abstractive summarization methods on our dataset. We further propose a method for direct crosslingual summarization (i.e., without requiring translation at inference time) by leveraging synthetic data and Neural Machine Translation as a pre-training step. Our method significantly outperforms the baseline approaches, while being more cost efficient during inference.
Abstractive summarization typically relies on large collections of paired articles and summaries. However, in many cases, parallel data is scarce and costly to obtain. We develop an abstractive summarization system that relies only on large collectio ns of example summaries and non-matching articles. Our approach consists of an unsupervised sentence extractor that selects salient sentences to include in the final summary, as well as a sentence abstractor that is trained on pseudo-parallel and synthetic data, that paraphrases each of the extracted sentences. We perform an extensive evaluation of our method: on the CNN/DailyMail benchmark, on which we compare our approach to fully supervised baselines, as well as on the novel task of automatically generating a press release from a scientific journal article, which is well suited for our system. We show promising performance on both tasks, without relying on any article-summary pairs.
Cross-lingual Summarization (CLS) aims at producing a summary in the target language for an article in the source language. Traditional solutions employ a two-step approach, i.e. translate then summarize or summarize then translate. Recently, end-to- end models have achieved better results, but these approaches are mostly limited by their dependence on large-scale labeled data. We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks such as translation and monolingual tasks like masked language models. Thus, our model can leverage the massive monolingual data to enhance its modeling of language. Moreover, the architecture has no task-specific components, which saves memory and increases optimization efficiency. We show in experiments that this pre-training scheme can effectively boost the performance of cross-lingual summarization. In Neural Cross-Lingual Summarization (NCLS) dataset, our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
With the abundance of automatic meeting transcripts, meeting summarization is of great interest to both participants and other parties. Traditional methods of summarizing meetings depend on complex multi-step pipelines that make joint optimization in tractable. Meanwhile, there are a handful of deep neural models for text summarization and dialogue systems. However, the semantic structure and styles of meeting transcripts are quite different from articles and conversations. In this paper, we propose a novel abstractive summary network that adapts to the meeting scenario. We design a hierarchical structure to accommodate long meeting transcripts and a role vector to depict the difference among speakers. Furthermore, due to the inadequacy of meeting summary data, we pretrain the model on large-scale news summary data. Empirical results show that our model outperforms previous approaches in both automatic metrics and human evaluation. For example, on ICSI dataset, the ROUGE-1 score increases from 34.66% to 46.28%.
Current abstractive summarization systems outperform their extractive counterparts, but their widespread adoption is inhibited by the inherent lack of interpretability. To achieve the best of both worlds, we propose EASE, an extractive-abstractive fr amework for evidence-based text generation and apply it to document summarization. We present an explainable summarization system based on the Information Bottleneck principle that is jointly trained for extraction and abstraction in an end-to-end fashion. Inspired by previous research that humans use a two-stage framework to summarize long documents (Jing and McKeown, 2000), our framework first extracts a pre-defined amount of evidence spans as explanations and then generates a summary using only the evidence. Using automatic and human evaluations, we show that explanations from our framework are more relevant than simple baselines, without substantially sacrificing the quality of the generated summary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا