ﻻ يوجد ملخص باللغة العربية
We introduce WikiLingua, a large-scale, multilingual dataset for the evaluation of crosslingual abstractive summarization systems. We extract article and summary pairs in 18 languages from WikiHow, a high quality, collaborative resource of how-to guides on a diverse set of topics written by human authors. We create gold-standard article-summary alignments across languages by aligning the images that are used to describe each how-to step in an article. As a set of baselines for further studies, we evaluate the performance of existing cross-lingual abstractive summarization methods on our dataset. We further propose a method for direct crosslingual summarization (i.e., without requiring translation at inference time) by leveraging synthetic data and Neural Machine Translation as a pre-training step. Our method significantly outperforms the baseline approaches, while being more cost efficient during inference.
Parallel cross-lingual summarization data is scarce, requiring models to better use the limited available cross-lingual resources. Existing methods to do so often adopt sequence-to-sequence networks with multi-task frameworks. Such approaches apply m
In this paper, we introduce XGLUE, a new benchmark dataset that can be used to train large-scale cross-lingual pre-trained models using multilingual and bilingual corpora and evaluate their performance across a diverse set of cross-lingual tasks. Com
Cross-lingual Summarization (CLS) aims at producing a summary in the target language for an article in the source language. Traditional solutions employ a two-step approach, i.e. translate then summarize or summarize then translate. Recently, end-to-
While online conversations can cover a vast amount of information in many different formats, abstractive text summarization has primarily focused on modeling solely news articles. This research gap is due, in part, to the lack of standardized dataset
Modern summarization models generate highly fluent but often factually unreliable outputs. This motivated a surge of metrics attempting to measure the factuality of automatically generated summaries. Due to the lack of common benchmarks, these metric