ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Select Cuts for Efficient Mixed-Integer Programming

186   0   0.0 ( 0 )
 نشر من قبل Zeren Huang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cutting plane methods play a significant role in modern solvers for tackling mixed-integer programming (MIP) problems. Proper selection of cuts would remove infeasible solutions in the early stage, thus largely reducing the computational burden without hurting the solution accuracy. However, the major cut selection approaches heavily rely on heuristics, which strongly depend on the specific problem at hand and thus limit their generalization capability. In this paper, we propose a data-driven and generalizable cut selection approach, named Cut Ranking, in the settings of multiple instance learning. To measure the quality of the candidate cuts, a scoring function, which takes the instance-specific cut features as inputs, is trained and applied in cut ranking and selection. In order to evaluate our method, we conduct extensive experiments on both synthetic datasets and real-world datasets. Compared with commonly used heuristics for cut selection, the learning-based policy has shown to be more effective, and is capable of generalizing over multiple problems with different properties. Cut Ranking has been deployed in an industrial solver for large-scale MIPs. In the online A/B testing of the product planning problems with more than $10^7$ variables and constraints daily, Cut Ranking has achieved the average speedup ratio of 12.42% over the production solver without any accuracy loss of solution.



قيم البحث

اقرأ أيضاً

We study the problem of learning a linear model to set the reserve price in an auction, given contextual information, in order to maximize expected revenue from the seller side. First, we show that it is not possible to solve this problem in polynomi al time unless the emph{Exponential Time Hypothesis} fails. Second, we present a strong mixed-integer programming (MIP) formulation for this problem, which is capable of exactly modeling the nonconvex and discontinuous expected reward function. Moreover, we show that this MIP formulation is ideal (i.e. the strongest possible formulation) for the revenue function of a single impression. Since it can be computationally expensive to exactly solve the MIP formulation in practice, we also study the performance of its linear programming (LP) relaxation. Though it may work well in practice, we show that, unfortunately, in the worst case the optimal objective of the LP relaxation can be O(number of samples) times larger than the optimal objective of the true problem. Finally, we present computational results, showcasing that the MIP formulation, along with its LP relaxation, are able to achieve superior in- and out-of-sample performance, as compared to state-of-the-art algorithms on both real and synthetic datasets. More broadly, we believe this work offers an indication of the strength of optimization methodologies like MIP to exactly model intrinsic discontinuities in machine learning problems.
We study robust convex quadratic programs where the uncertain problem parameters can contain both continuous and integer components. Under the natural boundedness assumption on the uncertainty set, we show that the generic problems are amenable to ex act copositive programming reformulations of polynomial size. These convex optimization problems are NP-hard but admit a conservative semidefinite programming (SDP) approximation that can be solved efficiently. We prove that the popular approximate S-lemma method --- which is valid only in the case of continuous uncertainty --- is weaker than our approximation. We also show that all results can be extended to the two-stage robust quadratic optimization setting if the problem has complete recourse. We assess the effectiveness of our proposed SDP reformulations and demonstrate their superiority over the state-of-the-art solution schemes on instances of least squares, project management, and multi-item newsvendor problems.
106 - Ranjeet Kumar 2020
We propose a dual dynamic integer programming (DDIP) framework for solving multi-scale mixed-integer model predictive control (MPC) problems. Such problems arise in applications that involve long horizons and/or fine temporal discretizations as well as mixed-integer states and controls (e.g., scheduling logic and discrete actuators). The approach uses a nested cutting-plane scheme that performs forward and backward sweeps along the time horizon to adaptively approximate cost-to-go functions. The DDIP scheme proposed can handle general MPC formulations with mixed-integer controls and states and can perform forward-backward sweeps over block time partitions. We demonstrate the performance of the proposed scheme by solving mixed-integer MPC problems that arise in the scheduling of central heating, ventilation, and air-conditioning (HVAC) plants. We show that the proposed scheme is scalable and dramatically outperforms state-of-the-art mixed-integer solvers.
Large Neighborhood Search (LNS) is a combinatorial optimization heuristic that starts with an assignment of values for the variables to be optimized, and iteratively improves it by searching a large neighborhood around the current assignment. In this paper we consider a learning-based LNS approach for mixed integer programs (MIPs). We train a Neural Diving model to represent a probability distribution over assignments, which, together with an off-the-shelf MIP solver, generates an initial assignment. Formulating the subsequent search steps as a Markov Decision Process, we train a Neural Neighborhood Selection policy to select a search neighborhood at each step, which is searched using a MIP solver to find the next assignment. The policy network is trained using imitation learning. We propose a target policy for imitation that, given enough compute resources, is guaranteed to select the neighborhood containing the optimal next assignment amongst all possible choices for the neighborhood of a specified size. Our approach matches or outperforms all the baselines on five real-world MIP datasets with large-scale instances from diverse applications, including two production applications at Google. It achieves $2times$ to $37.8times$ better average primal gap than the best baseline on three of the datasets at large running times.
The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a sub stantial revision and extension of this framework that integrates symbolic presolving, features an exact repair step for solutions from primal heuristics, employs a faster rational LP solver based on LP iterative refinement, and is able to produce independently verifiable certificates of optimality. We study the significantly improved performance and give insights into the computational behavior of the new algorithmic components. On the MIPLIB 2017 benchmark set, we observe an average speedup of 6.6x over the original framework and 2.8 times as many instances solved within a time limit of two hours.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا