ترغب بنشر مسار تعليمي؟ اضغط هنا

Curvature-induced long ranged supercurrents in diffusive SFS Josephson Junctions, with dynamic $0-pi$ transition

69   0   0.0 ( 0 )
 نشر من قبل Tancredi Salamone
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report that spin supercurrents can be induced in diffusive SFS Josephson junctions without any magnetic misalignment or intrinsic spin orbit coupling. Instead, the pathway to spin triplet generation is provided via geometric curvature, and results in a long ranged Josephson effect. In addition, the curvature is shown to induce a dynamically tunable $0-pi$ transition in the junction. We provide the analytic framework and discuss potential experimental and innovation implications.



قيم البحث

اقرأ أيضاً

151 - E. Goldobin , A. Sterck , T. Gaber 2003
We propose, implement and test experimentally long Josephson 0-pi junctions fabricated using conventional Nb-AlOx-Nb technology. We show that using a pair of current injectors, one can create an arbitrary discontinuity of the Josephson phase and in p articular a pi-discontinuity, just like in d-wave/s-wave or in d-wave/d-wave junctions, and study fractional Josephson vortices which spontaneously appear. Moreover, using such junctions, we can investigate the emph{dynamics} of the fractional vortices -- a domain which is not yet available for natural 0-pi-junctions due to their inherently high damping. We observe half-integer zero-field steps which appear on the current-voltage characteristics due to hopping of semifluxons.
We present a study on low-$T_c$ superconductor-insulator-ferromagnet-superconductor (SIFS) Josephson junctions. SIFS junctions have gained considerable interest in recent years because they show a number of interesting properties for future classical and quantum computing devices. We optimized the fabrication process of these junctions to achieve a homogeneous current transport, ending up with high-quality samples. Depending on the thickness of the ferromagnetic layer and on temperature, the SIFS junctions are in the ground state with a phase drop either 0 or $pi$. By using a ferromagnetic layer with variable step-like thickness along the junction, we obtained a so-called 0-$pi$ Josephson junction, in which 0 and $pi$ ground states compete with each other. At a certain temperature the 0 and $pi$ parts of the junction are perfectly symmetric, i.e. the absolute critical current densities are equal. In this case the degenerate ground state corresponds to a vortex of supercurrent circulating clock- or counterclockwise and creating a magnetic flux which carries a fraction of the magnetic flux quantum $Phi_0$.
We present experimental studies of static and dynamic properties of 0, pi and 0-pi superconductor-insulator-ferromagnet-superconductor (SIFS) Josephson junctions of small and intermediate length. In the underdamped limit these junctions exhibit a ric h dynamical behavior such as resonant steps on the current-voltage characteristics. Varying the experimental conditions, zero field steps, Fiske steps and Shapiro steps are observed with a high resolution. A strong signature of the 0-pi Josephson junction is demonstrated by measuring the critical current as a function of two components (B_x, B_y) of an in-plane magnetic field. The experimental observation of a half-integer zero field step in 0-pi SIFS junctions is presented.
We present measurements of the current-phase relation (CPR) of Superconductor-Ferromagnet-Superconductor (SFS) Josephson junctions as a function of temperature. The CPR is determined by incorporating the junction into a superconducting loop coupled t o a dc SQUID, allowing measurement of the junction phase difference. Junctions fabricated with a thin (~ 22 nm) barrier of Cu0.47Ni0.53 sandwiched between Nb electrodes exhibit a re-entrant critical current with temperature, vanishing at T =T_pi ~ 2-4 K. We find that the critical current is negative for T < T_pi, indicating that the junction is a pi-Josephson junction. We find no evidence for second-order Josephson tunneling near T_pi in the CPR predicted by several theories.
We theoretically study the Josephson current in Ising superconductor-half-metal-Ising superconductor junctions. By solving the Bogoliubov-de Gennes equations, the Josephson currents contributed by the discrete Andreev levels and the continuous spectr um are obtained. For very short junctions, because the direct tunneling of the Cooper pair dominates the Josephson current, the current-phase difference relation is independent of the magnetization direction, which is the same as the conventional superconductor-ferromagnet-superconductor junctions. On the other hand, when the length of the half-metal is similar to or greater than the superconducting coherence length, the spin-triplet Josephson effect occurs and dominates the Josephson current. In this case, the current-phase difference relations show the strong magnetoanisotropic behaviors with the period pi. When the magnetization direction points to the $pm$ z directions, the current is zero regardless of the phase difference. However, the current has a large value when the magnetization direction is parallel to the junction plane, which leads to a perfect switch effect of the Josephson current. Furthermore, we find that the long junctions can host both the 0 state and pi state, and the $0$-$pi$ transitions can be achieved with the change of the magnetization direction. The physical origins of the switch effect and $0$-$pi$ transitions are interpreted from the perspectives of the spin-triplet Andreev reflection, the Ising pairing order parameter and the Ginzburg-Landau type of free energy. In addition, the influences of the chemical potential, the magnetization magnitude, and the strength of the Ising spin-orbit coupling on the switch effect and $0$-$pi$ transitions are also investigated. Furthermore, the two-dimensional Josephson junctions are also investigated and we show that the spin-triplet Josephson effect can exist always.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا