ترغب بنشر مسار تعليمي؟ اضغط هنا

Rethinking Grid-Forming and Grid-Following Inverters: A Duality Theory

80   0   0.0 ( 0 )
 نشر من قبل Yitong Li
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Power electronic converters for integrating renewable energy resources into power systems can be divided into grid-forming and grid-following inverters. They possess certain similarities, but several important differences, which means that the relationship between them is quite subtle and sometimes obscure. In this article, a new perspective based on duality is proposed to create new insights. It successfully unifies the grid interfacing and synchronization characteristics of the two inverter types in a symmetric, elegant, and technology-neutral form. Analysis shows that the grid-forming and grid-following inverters are duals of each other in several ways including a) synchronization controllers: frequency droop control and phase-locked loop (PLL); b) grid-interfacing characteristics: current-following voltage-forming and voltage-following current-forming; c) swing characteristics: current-angle swing and voltage-angle swing; d) inner-loop controllers: output impedance shaping and output admittance shaping; and e) grid strength compatibility: strong-grid instability and weak-grid instability. The swing equations are also derived in dual form for two inverter types, which reveal the dynamic interaction between the grid strength, the synchronization controllers, and the inner-loop controllers. Insights are generated into cases of poor stability. The theoretical analysis and time-domain simulation results are used to illustrate cases of instability for simple single-inverter-infinite-bus systems and a multi-inverter power network.

قيم البحث

اقرأ أيضاً

Microgrids are increasingly recognized as a key technology for the integration of distributed energy resources into the power network, allowing local clusters of load and distributed energy resources to operate autonomously. However, microgrid operat ion brings new challenges, especially in islanded operation as frequency and voltage control are no longer provided by large rotating machines. Instead, the power converters in the microgrid must coordinate to regulate the frequency and voltage and ensure stability. We consider the problem of designing controllers to achieve these objectives. Using passivity theory to derive decentralized stability conditions for the microgrid, we propose a control design method for grid-forming inverters. For the analysis we use higher-order models for the inverters and also advanced dynamic models for the lines with an arbitrarily large number of states. By satisfying the decentralized condition formulated, plug-and-play operation can be achieved with guaranteed stability, and performance can also be improved by incorporating this condition as a constraint in corresponding optimization problems formulated. In addition, our control design can improve the power sharing properties of the microgrid compared to previous non-droop approaches. Finally, realistic simulations confirm that the controller design improves the stability and performance of the power network.
The grid-forming converter is an important unit in the future power system with more inverter-interfaced generators. However, improving its performance is still a key challenge. This paper proposes a generalized architecture of the grid-forming conve rter from the view of multivariable feedback control. As a result, many of the existing popular control strategies, i.e., droop control, power synchronization control, virtual synchronous generator control, matching control, dispatchable virtual oscillator control, and their improved forms are unified into a multivariable feedback control transfer matrix working on several linear and nonlinear error signals. Meanwhile, unlike the traditional assumptions of decoupling between AC and DC control, active power and reactive power control, the proposed configuration simultaneously takes all of them into consideration, which therefore can provide better performance. As an example, a new multi-input-multi-output-based grid-forming (MIMO-GFM) control is proposed based on the generalized configuration. To cope with the multivariable feedback, an optimal and structured $H_{infty}$ synthesis is used to design the control parameters. At last, simulation and experimental results show superior performance and robustness of the proposed configuration and control.
147 - Yuan Gao , Hai-Peng Ren , Jie Li 2020
The renewable energy is connected to the power grid through power electronic converters, which are lack of make the inertia of synchronous generator/machine (SM) be lost. The increasing penetration of renewable energy in power system weakens the freq uency and voltage stability. The Grid-Forming Converters (GFCs) simulate the function of synchronous motor through control method in order to improve the stability of power grid by providing inertia and stability regulation mechanism. This kind of converter control methods include virtual synchronous machine, schedulable virtual oscillator control and so on. These control method mainly use AC side state feedback and do not monitor the DC side state. This paper analyzes the control strategy of GFC considering power grid stability, including Frequency Droop Control, Virtual Synchronous Machine Control and dispatchable Virtual Oscillator Control. The DC side voltage collapse problem is found when a large load disturbance occurs. The control methods of GFC considering DC side voltage feedback are proposed, which can ensure the synchronization characteristics of grid connection and solve the problem of DC side voltage collapse. The proposed method is verified by IEEE-9 bus system, which shows the effectiveness of the proposed method.
In order to improve dynamic characteristics of the power system with high-proportion renewable energy sources (RESs), it is necessary for the voltage source converter (VSC), interfaces of RESs, to provide inertial and frequency regulation. In practic al applications, VSCs are better to be controlled as a current source due to its weak overcurrent capacity. According to the characteristic, a dual synchronous theory is proposed to analyze the synchronization between current sources in this paper. Based on dual synchronous idea, a dual synchronous generator (DSG) control is applied in VSC to form inertial current source. In addition, a braking control is embedded in DSG control to improve the transient stability of VSC. Finally, experimental results verify the effectiveness of the theory and the control method.
Frequency fluctuations in power grids, caused by unpredictable renewable energy sources, consumer behavior and trading, need to be balanced to ensure stable grid operation. Standard smart grid solutions to mitigate large frequency excursions are base d on centrally collecting data and give rise to security and privacy concerns. Furthermore, control of fluctuations is often tested by employing Gaussian perturbations. Here, we demonstrate that power grid frequency fluctuations are in general non-Gaussian, implying that large excursions are more likely than expected based on Gaussian modeling. We consider real power grid frequency measurements from Continental Europe and compare them to stochastic models and predictions based on Fokker-Planck equations. Furthermore, we review a decentral smart grid control scheme to limit these fluctuations. In particular, we derive a scaling law of how decentralized control actions reduce the magnitude of frequency fluctuations and demonstrate the power of these theoretical predictions using a test grid. Overall, we find that decentral smart grid control may reduce grid frequency excursions due to both Gaussian and non-Gaussian power fluctuations and thus offers an alternative pathway for mitigating fluctuation-induced risks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا