ترغب بنشر مسار تعليمي؟ اضغط هنا

Benchmarking Many-body Approaches for the Determination of Isotope Shift Constants: Application to the Li, Be$^+$ and Ar$^{15+}$ Isoelectronic Systems

65   0   0.0 ( 0 )
 نشر من قبل Bijaya Sahoo Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have applied relativistic coupled-cluster (RCC) theory to determine the isotope shift (IS) constants of the first eight low-lying states of the Li, Be$^+$ and Ar$^{15+}$ isoelectronic systems. Though the RCC theory with singles, doubles and triples approximation (RCCSDT method) is an exact method for these systems for a given set of basis functions, we notice large differences in the results from this method when various procedures in the RCC theory framework are adopted to estimate the IS constants. This has been demonstrated by presenting the IS constants of the aforementioned states from the finite-field, expectation value and analytical response (AR) approaches of the RCCSDT method. Contributions from valence triple excitations, Breit interaction and lower-order QED effects to the evaluation of these IS constants are also highlighted. Our results are compared with high-precision calculations reported using few-body methods wherever possible. We find that results from the AR procedure are more reliable than the other two approaches. This analysis is crucial for understanding the roles of electron correlation effects in the accurate determination of IS constants in the heavier atomic systems, where few-body methods cannot be applied.



قيم البحث

اقرأ أيضاً

Transport equations for autonomous driven Fermionic quantum systems are derived with the help of statistical assumptions and of the Markov approximation. The statistical assumptions hold if the system consists of subsystems within which equilibration is sufficiently fast. The Markov approximation holds if the level density in each subsystem is sufficiently smooth in energy. The transport equation describes both, relaxation of occupation probability among subsystems at equal energy that leads to thermalization, and the transport of the system to higher energy caused by the driving force. The laser-nucleus interaction serves as an example for the applicability and flexibility of the approach.
379 - B. Krippa 2009
We consider the applications of functional renormalisation group to few and many-body systems. As an application to the few-body dynamics we study the ratio between the fermion-fermion scattering length and the dimer-dimer scattering length for syste ms of few nonrelativistic fermions. We find a strong dependence on the cutoff function used in the renormalisation flow for a two-body truncation of the action. Adding a simple three-body term substantially reduces this dependence. In the context of many-body physics we study the dynamics of both symmetric and asymmetric many-fermion systems using the same functional renormalisation technique. It is demonstrated that functional renormalisation group gives sensible and reliable results and provides a solid theoretical ground for the future studies. Open questions as well as lines of further developments are discussed.
126 - S. P. Weppner 2004
A new development in the antisymmetrization of the first-order nucleon-nucleus elastic microscopic optical potential is presented which systematically includes the many-body character of the nucleus within the two-body scattering operators. The resul ts reduce the overall strength of the nucleon-nucleus potential and require the inclusion of historically excluded channels from the nucleon-nucleon potential input. Calculations produced improve the match with neutron-nucleus total cross section, elastic proton-nucleus differential cross section, and spin observable data. A comparison is also done using different nucleon-nucleon potentials from the past twenty years.
107 - V. F. Kharchenko 2012
A new general formalism for determining the electric multipole polarizabilities of quantum (atomic and nuclear) bound systems based on the use of the transition matrix in momentum space has been developed. As distinct from the conventional approach w ith the application of the spectral expansion of the total Greens function, our approach does not require preliminary determination of the entire unperturbated spectrum; instead, it makes possible to calculate the polarizability of a few-body bound complex directly based on solving integral equations for the wave function of the ground bound state and the transition matrix at negative energy, both of them being real functions of momenta. A formula for the multipole polarizabilities of a two-body bound complex formed by a central interaction potential has been derived and studied. To test, the developed $T$-matrix formalism has been applied to the calculation of the dipole, quadrupole and octupole polarizabilities of the hydrogen atom.
Normalizing flows are a class of machine learning models used to construct a complex distribution through a bijective mapping of a simple base distribution. We demonstrate that normalizing flows are particularly well suited as a Monte Carlo integrati on framework for quantum many-body calculations that require the repeated evaluation of high-dimensional integrals across smoothly varying integrands and integration regions. As an example, we consider the finite-temperature nuclear equation of state. An important advantage of normalizing flows is the ability to build highly expressive models of the target integrand, which we demonstrate enables precise evaluations of the nuclear free energy and its derivatives. Furthermore, we show that a normalizing flow model trained on one target integrand can be used to efficiently calculate related integrals when the temperature, density, or nuclear force is varied. This work will support future efforts to build microscopic equations of state for numerical simulations of supernovae and neutron star mergers that employ state-of-the-art nuclear forces and many-body methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا