ﻻ يوجد ملخص باللغة العربية
Normalizing flows are a class of machine learning models used to construct a complex distribution through a bijective mapping of a simple base distribution. We demonstrate that normalizing flows are particularly well suited as a Monte Carlo integration framework for quantum many-body calculations that require the repeated evaluation of high-dimensional integrals across smoothly varying integrands and integration regions. As an example, we consider the finite-temperature nuclear equation of state. An important advantage of normalizing flows is the ability to build highly expressive models of the target integrand, which we demonstrate enables precise evaluations of the nuclear free energy and its derivatives. Furthermore, we show that a normalizing flow model trained on one target integrand can be used to efficiently calculate related integrals when the temperature, density, or nuclear force is varied. This work will support future efforts to build microscopic equations of state for numerical simulations of supernovae and neutron star mergers that employ state-of-the-art nuclear forces and many-body methods.
The computation of the thermodynamic properties of nuclear matter is a central task of theoretical nuclear physics. The nuclear equation of state is an essential quantity in nuclear astrophysics and governs the properties of neutron stars and core-co
The isospin-asymmetry dependence of the nuclear matter equation of state obtained from microscopic chiral two- and three-body interactions in second-order many-body perturbation theory is examined in detail. The quadratic, quartic and sextic coeffici
The Bethe-Brueckner-Goldstone many-body theory of the Nuclear Equation of State is reviewed in some details. In the theory, one performs an expansion in terms of the Brueckner two-body scattering matrix and an ordering of the corresponding many-body
A new convenient method to diagonalize the non-relativistic many-body Schroedinger equation with two-body central potentials is derived. It combines kinematic rotations (democracy transformations) and exact calculation of overlap integrals between ba
Starting from realistic nuclear forces, the chiral N$^3$LO and JISP16, we have applied many-body perturbation theory (MBPT) to the structure of closed-shell nuclei, $^4$He and $^{16}$O. The two-body N$^3$LO interaction is softened by a similarity ren