ﻻ يوجد ملخص باللغة العربية
Computational prediction of enzyme mechanism and protein function requires accurate physics-based models and suitable sampling. We discuss recent advances in large-scale quantum mechanical (QM) modeling of biochemical systems that have reduced the cost of high-accuracy models. Trade-offs between sampling and accuracy have motivated modeling with molecular mechanics (MM) in a multi-scale QM/MM or iterative approach. Limitations to both conventional density functional theory (DFT) and classical MM force fields remain for describing non-covalent interactions in comparison to experiment or wavefunction theory. Because predictions of enzyme action (i.e., electrostatics), free energy barriers, and mechanisms are sensitive to the protocol and embedding method in QM/MM, convergence tests and systematic methods for quantifying QM-level interactions are a needed, active area of development.
Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, t
QM (quantum mechenics) and MM (molecular mechenics) coupling methods are widely used in simulations of crystalline defects. In this paper, we construct a residual based a posteriori error indicator for QM/MM coupling approximations. We prove the reli
A hybrid Car-Parrinello QM/MM molecular dynamics simulation has been carried out for the Watson-Crick base pair of 9-ethyl-8-phenyladenine and 1-cyclohexyluracil in deuterochloroform solution at room temperature. The resulting trajectory is analyzed
Hybrid quantum/molecular mechanics models (QM/MM methods) are widely used in material and molecular simulations when MM models do not provide sufficient accuracy but pure QM models are computationally prohibitive. Adaptive QM/MM coupling methods feat
We develop and analyze a framework for consistent QM/MM (quantum/classic) hybrid models of crystalline defects, which admits general atomistic interactions including traditional off-the-shell interatomic potentials as well as state of art machine-lea