ترغب بنشر مسار تعليمي؟ اضغط هنا

RSCA: Real-time Segmentation-based Context-Aware Scene Text Detection

127   0   0.0 ( 0 )
 نشر من قبل Jiachen Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Segmentation-based scene text detection methods have been widely adopted for arbitrary-shaped text detection recently, since they make accurate pixel-level predictions on curved text instances and can facilitate real-time inference without time-consuming processing on anchors. However, current segmentation-based models are unable to learn the shapes of curved texts and often require complex label assignments or repeated feature aggregations for more accurate detection. In this paper, we propose RSCA: a Real-time Segmentation-based Context-Aware model for arbitrary-shaped scene text detection, which sets a strong baseline for scene text detection with two simple yet effective strategies: Local Context-Aware Upsampling and Dynamic Text-Spine Labeling, which model local spatial transformation and simplify label assignments separately. Based on these strategies, RSCA achieves state-of-the-art performance in both speed and accuracy, without complex label assignments or repeated feature aggregations. We conduct extensive experiments on multiple benchmarks to validate the effectiveness of our method. RSCA-640 reaches 83.9% F-measure at 48.3 FPS on CTW1500 dataset.



قيم البحث

اقرأ أيضاً

Recently, segmentation-based methods are quite popular in scene text detection, as the segmentation results can more accurately describe scene text of various shapes such as curve text. However, the post-processing of binarization is essential for se gmentation-based detection, which converts probability maps produced by a segmentation method into bounding boxes/regions of text. In this paper, we propose a module named Differentiable Binarization (DB), which can perform the binarization process in a segmentation network. Optimized along with a DB module, a segmentation network can adaptively set the thresholds for binarization, which not only simplifies the post-processing but also enhances the performance of text detection. Based on a simple segmentation network, we validate the performance improvements of DB on five benchmark datasets, which consistently achieves state-of-the-art results, in terms of both detection accuracy and speed. In particular, with a light-weight backbone, the performance improvements by DB are significant so that we can look for an ideal tradeoff between detection accuracy and efficiency. Specifically, with a backbone of ResNet-18, our detector achieves an F-measure of 82.8, running at 62 FPS, on the MSRA-TD500 dataset. Code is available at: https://github.com/MhLiao/DB
101 - Chuang Yang , Mulin Chen , Qi Wang 2021
Existing object detection-based text detectors mainly concentrate on detecting horizontal and multioriented text. However, they do not pay enough attention to complex-shape text (curved or other irregularly shaped text). Recently, segmentation-based text detection methods have been introduced to deal with the complex-shape text; however, the pixel level processing increases the computational cost significantly. To further improve the accuracy and efficiency, we propose a novel detection framework for arbitrary-shape text detection, termed as RayNet. RayNet uses Center Point Set (CPS) and Ray Distance (RD) to fit text, where CPS is used to determine the text general position and the RD is combined with CPS to compute Ray Points (RP) to localize the text accurate shape. Since RP are disordered, we develop the Ray Points Connection (RPC) algorithm to reorder RP, which significantly improves the detection performance of complex-shape text. RayNet achieves impressive performance on existing curved text dataset (CTW1500) and quadrangle text dataset (ICDAR2015), which demonstrate its superiority against several state-of-the-art methods.
213 - Yixing Zhu , Jun Du 2018
In this paper, we propose a novel scene text detection method named TextMountain. The key idea of TextMountain is making full use of border-center information. Different from previous works that treat center-border as a binary classification problem, we predict text center-border probability (TCBP) and text center-direction (TCD). The TCBP is just like a mountain whose top is text center and foot is text border. The mountaintop can separate text instances which cannot be easily achieved using semantic segmentation map and its rising direction can plan a road to top for each pixel on mountain foot at the group stage. The TCD helps TCBP learning better. Our label rules will not lead to the ambiguous problem with the transformation of angle, so the proposed method is robust to multi-oriented text and can also handle well with curved text. In inference stage, each pixel at the mountain foot needs to search the path to the mountaintop and this process can be efficiently completed in parallel, yielding the efficiency of our method compared with others. The experiments on MLT, ICDAR2015, RCTW-17 and SCUT-CTW1500 databases demonstrate that the proposed method achieves better or comparable performance in terms of both accuracy and efficiency. It is worth mentioning our method achieves an F-measure of 76.85% on MLT which outperforms the previous methods by a large margin. Code will be made available.
Recent works have widely explored the contextual dependencies to achieve more accurate segmentation results. However, most approaches rarely distinguish different types of contextual dependencies, which may pollute the scene understanding. In this wo rk, we directly supervise the feature aggregation to distinguish the intra-class and inter-class context clearly. Specifically, we develop a Context Prior with the supervision of the Affinity Loss. Given an input image and corresponding ground truth, Affinity Loss constructs an ideal affinity map to supervise the learning of Context Prior. The learned Context Prior extracts the pixels belonging to the same category, while the reversed prior focuses on the pixels of different classes. Embedded into a conventional deep CNN, the proposed Context Prior Layer can selectively capture the intra-class and inter-class contextual dependencies, leading to robust feature representation. To validate the effectiveness, we design an effective Context Prior Network (CPNet). Extensive quantitative and qualitative evaluations demonstrate that the proposed model performs favorably against state-of-the-art semantic segmentation approaches. More specifically, our algorithm achieves 46.3% mIoU on ADE20K, 53.9% mIoU on PASCAL-Context, and 81.3% mIoU on Cityscapes. Code is available at https://git.io/ContextPrior.
Zero padding is widely used in convolutional neural networks to prevent the size of feature maps diminishing too fast. However, it has been claimed to disturb the statistics at the border. As an alternative, we propose a context-aware (CA) padding ap proach to extend the image. We reformulate the padding problem as an image extrapolation problem and illustrate the effects on the semantic segmentation task. Using context-aware padding, the ResNet-based segmentation model achieves higher mean Intersection-Over-Union than the traditional zero padding on the Cityscapes and the dataset of DeepGlobe satellite imaging challenge. Furthermore, our padding does not bring noticeable overhead during training and testing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا