ترغب بنشر مسار تعليمي؟ اضغط هنا

Real-time Scene Text Detection with Differentiable Binarization

137   0   0.0 ( 0 )
 نشر من قبل Minghui Liao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, segmentation-based methods are quite popular in scene text detection, as the segmentation results can more accurately describe scene text of various shapes such as curve text. However, the post-processing of binarization is essential for segmentation-based detection, which converts probability maps produced by a segmentation method into bounding boxes/regions of text. In this paper, we propose a module named Differentiable Binarization (DB), which can perform the binarization process in a segmentation network. Optimized along with a DB module, a segmentation network can adaptively set the thresholds for binarization, which not only simplifies the post-processing but also enhances the performance of text detection. Based on a simple segmentation network, we validate the performance improvements of DB on five benchmark datasets, which consistently achieves state-of-the-art results, in terms of both detection accuracy and speed. In particular, with a light-weight backbone, the performance improvements by DB are significant so that we can look for an ideal tradeoff between detection accuracy and efficiency. Specifically, with a backbone of ResNet-18, our detector achieves an F-measure of 82.8, running at 62 FPS, on the MSRA-TD500 dataset. Code is available at: https://github.com/MhLiao/DB



قيم البحث

اقرأ أيضاً

101 - Chuang Yang , Mulin Chen , Qi Wang 2021
Existing object detection-based text detectors mainly concentrate on detecting horizontal and multioriented text. However, they do not pay enough attention to complex-shape text (curved or other irregularly shaped text). Recently, segmentation-based text detection methods have been introduced to deal with the complex-shape text; however, the pixel level processing increases the computational cost significantly. To further improve the accuracy and efficiency, we propose a novel detection framework for arbitrary-shape text detection, termed as RayNet. RayNet uses Center Point Set (CPS) and Ray Distance (RD) to fit text, where CPS is used to determine the text general position and the RD is combined with CPS to compute Ray Points (RP) to localize the text accurate shape. Since RP are disordered, we develop the Ray Points Connection (RPC) algorithm to reorder RP, which significantly improves the detection performance of complex-shape text. RayNet achieves impressive performance on existing curved text dataset (CTW1500) and quadrangle text dataset (ICDAR2015), which demonstrate its superiority against several state-of-the-art methods.
Segmentation-based scene text detection methods have been widely adopted for arbitrary-shaped text detection recently, since they make accurate pixel-level predictions on curved text instances and can facilitate real-time inference without time-consu ming processing on anchors. However, current segmentation-based models are unable to learn the shapes of curved texts and often require complex label assignments or repeated feature aggregations for more accurate detection. In this paper, we propose RSCA: a Real-time Segmentation-based Context-Aware model for arbitrary-shaped scene text detection, which sets a strong baseline for scene text detection with two simple yet effective strategies: Local Context-Aware Upsampling and Dynamic Text-Spine Labeling, which model local spatial transformation and simplify label assignments separately. Based on these strategies, RSCA achieves state-of-the-art performance in both speed and accuracy, without complex label assignments or repeated feature aggregations. We conduct extensive experiments on multiple benchmarks to validate the effectiveness of our method. RSCA-640 reaches 83.9% F-measure at 48.3 FPS on CTW1500 dataset.
Scene text detection, which is one of the most popular topics in both academia and industry, can achieve remarkable performance with sufficient training data. However, the annotation costs of scene text detection are huge with traditional labeling me thods due to the various shapes of texts. Thus, it is practical and insightful to study simpler labeling methods without harming the detection performance. In this paper, we propose to annotate the texts by scribble lines instead of polygons for text detection. It is a general labeling method for texts with various shapes and requires low labeling costs. Furthermore, a weakly-supervised scene text detection framework is proposed to use the scribble lines for text detection. The experiments on several benchmarks show that the proposed method bridges the performance gap between the weakly labeling method and the original polygon-based labeling methods, with even better performance. We will release the weak annotations of the benchmarks in our experiments and hope it will benefit the field of scene text detection to achieve better performance with simpler annotations.
Scene text recognition (STR) task has a common practice: All state-of-the-art STR models are trained on large synthetic data. In contrast to this practice, training STR models only on fewer real labels (STR with fewer labels) is important when we hav e to train STR models without synthetic data: for handwritten or artistic texts that are difficult to generate synthetically and for languages other than English for which we do not always have synthetic data. However, there has been implicit common knowledge that training STR models on real data is nearly impossible because real data is insufficient. We consider that this common knowledge has obstructed the study of STR with fewer labels. In this work, we would like to reactivate STR with fewer labels by disproving the common knowledge. We consolidate recently accumulated public real data and show that we can train STR models satisfactorily only with real labeled data. Subsequently, we find simple data augmentation to fully exploit real data. Furthermore, we improve the models by collecting unlabeled data and introducing semi- and self-supervised methods. As a result, we obtain a competitive model to state-of-the-art methods. To the best of our knowledge, this is the first study that 1) shows sufficient performance by only using real labels and 2) introduces semi- and self-supervised methods into STR with fewer labels. Our code and data are available: https://github.com/ku21fan/STR-Fewer-Labels
104 - Weijia Wu , Ning Lu , Enze Xie 2020
Deep learning-based scene text detection can achieve preferable performance, powered with sufficient labeled training data. However, manual labeling is time consuming and laborious. At the extreme, the corresponding annotated data are unavailable. Ex ploiting synthetic data is a very promising solution except for domain distribution mismatches between synthetic datasets and real datasets. To address the severe domain distribution mismatch, we propose a synthetic-to-real domain adaptation method for scene text detection, which transfers knowledge from synthetic data (source domain) to real data (target domain). In this paper, a text self-training (TST) method and adversarial text instance alignment (ATA) for domain adaptive scene text detection are introduced. ATA helps the network learn domain-invariant features by training a domain classifier in an adversarial manner. TST diminishes the adverse effects of false positives~(FPs) and false negatives~(FNs) from inaccurate pseudo-labels. Two components have positive effects on improving the performance of scene text detectors when adapting from synthetic-to-real scenes. We evaluate the proposed method by transferring from SynthText, VISD to ICDAR2015, ICDAR2013. The results demonstrate the effectiveness of the proposed method with up to 10% improvement, which has important exploration significance for domain adaptive scene text detection. Code is available at https://github.com/weijiawu/SyntoReal_STD
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا