ترغب بنشر مسار تعليمي؟ اضغط هنا

Play. Pause. Rewind. Measuring local entropy production and extractable work in active matter

99   0   0.0 ( 0 )
 نشر من قبل Stefano Martiniani
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Time-reversal symmetry breaking and entropy production are universal features of nonequilibrium phenomena. Despite its importance in the physics of active and living systems, the entropy production of systems with many degrees of freedom has remained of little practical significance because the high-dimensionality of their state space makes it difficult to measure. We introduce a local measure of entropy production and a numerical protocol to estimate it. We establish a connection between the entropy production and extractability of work in a given region of the system and show how this quantity depends crucially on the degrees of freedom being tracked. We validate our approach in theory, simulation, and experiments by considering systems of active Brownian particles undergoing motility induced phase separation, as well as active Brownian particles and E. Coli in a rectifying device in which the time-reversal asymmetry of the particle dynamics couples to spatial asymmetry to reveal its effects on a macroscopic scale.



قيم البحث

اقرأ أيضاً

Active biological systems reside far from equilibrium, dissipating heat even in their steady state, thus requiring an extension of conventional equilibrium thermodynamics and statistical mechanics. In this Letter, we have extended the emerging framew ork of stochastic thermodynamics to active matter. In particular, for the active Ornstein-Uhlenbeck model, we have provided consistent definitions of thermodynamic quantities such as work, energy, heat, entropy, and entropy production at the level of single, stochastic trajectories and derived related fluctuation relations. We have developed a generalization of the Clausius inequality, which is valid even in the presence of the non-Hamiltonian dynamics underlying active matter systems. We have illustrated our results with explicit numerical studies.
Work and quantum correlations are two fundamental resources in thermodynamics and quantum information theory. In this work we study how to use correlations among quantum systems to optimally store work. We analyse this question for isolated quantum e nsembles, where the work can be naturally divided into two contributions: a local contribution from each system, and a global contribution originating from correlations among systems. We focus on the latter and consider quantum systems which are locally thermal, thus from which any extractable work can only come from correlations. We compute the maximum extractable work for general entangled states, separable states, and states with fixed entropy. Our results show that while entanglement gives an advantage for small quantum ensembles, this gain vanishes for a large number of systems.
We derive an analytic expression for the mechanical pressure of a generic one-dimensional model of confined active Brownian particles (ABPs) that is valid for all values of Peclet number Pe and all confining scenarios. Our model reproduces the known scaling of bulk pressure with Pe^2 while in strong confinement pressure scales with Pe. Our analytic results are very well reproduced by simulations of ABPs in 2D. We use the pressure formula to calculate both the work performed by an active engine and its efficiency. In particular, efficiency is maximized for work cycles with finite period and not in the limit of infinitely slow cycles as in thermodynamic engines.
This article summarizes some of the open questions in the field of active matter that have emerged during Active20, a nine-week program held at the Kavli Institute for Theoretical Physics (KITP) in Spring 2020. The article does not provide a review o f the field, but rather a personal view of the authors, informed by contributions of all participants, on new directions in active matter research. The topics highlighted include: the ubiquitous occurrence of spontaneous flows and active turbulence and the theoretical and experimental challenges associated with controlling and harnessing such flows; the role of motile topological defects in ordered states of active matter and their possible biological relevance; the emergence of non-reciprocal effective interactions and the role of chirality in active systems and their intriguing connections to non-Hermitian quantum mechanics; the progress towards a formulation of the thermodynamics of active systems thanks to the feedback between theory and experiments; the impact of the active matter framework on our understanding of the emergent mechanics of biological tissue. These seemingly diverse phenomena all stem from the defining property of active matter - assemblies of self-driven entities that individually break time-reversal symmetry and collectively organize in a rich variety of nonequilibrium states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا