ﻻ يوجد ملخص باللغة العربية
We derive an analytic expression for the mechanical pressure of a generic one-dimensional model of confined active Brownian particles (ABPs) that is valid for all values of Peclet number Pe and all confining scenarios. Our model reproduces the known scaling of bulk pressure with Pe^2 while in strong confinement pressure scales with Pe. Our analytic results are very well reproduced by simulations of ABPs in 2D. We use the pressure formula to calculate both the work performed by an active engine and its efficiency. In particular, efficiency is maximized for work cycles with finite period and not in the limit of infinitely slow cycles as in thermodynamic engines.
Frictional forces affect the rheology of hard-sphere colloids, at high shear rate. Here we demonstrate, via numerical simulations, that they also affect the dynamics of active Brownian particles, and their motility induced phase separation. Frictiona
Recent experimental studies have demonstrated that cellular motion can be directed by topographical gradients, such as those resulting from spatial variations in the features of a micropatterned substrate. This phenomenon, known as topotaxis, is espe
Phase separation in a low-density gas-like phase and a high-density liquid-like one is a common trait of biological and synthetic self-propelling particles systems. The competition between motility and stochastic forces is assumed to fix the boundary
We derive from first principles the mechanical pressure $P$, defined as the force per unit area on a bounding wall, in a system of spherical, overdamped, active Brownian particles at density $rho$. Our exact result relates $P$, in closed form, to bul
Despite their fundamentally non-equilibrium nature, the individual and collective behavior of active systems with polar propulsion and isotropic interactions (polar-isotropic active systems) are remarkably well captured by equilibrium mapping techniq