ﻻ يوجد ملخص باللغة العربية
In nonequilibrium systems, the relative fluctuation of a current has a universal trade-off relation with the entropy production, called the thermodynamic uncertainty relation (TUR). For systems with broken time reversal symmetry, its violation has been reported in specific models or in the linear response regime. Here, we derive a modified version of the TUR analytically in the overdamped limit for general Langevin dynamics with a magnetic Lorentz force causing time reversal broken. Remarkably, this modified version is simply given by the conventional TUR scaled by the ratio of the reduced effective temperature of the overdamped motion to the reservoir temperature, permitting a violation of the conventional TUR. Without the Lorentz force, this ratio becomes unity and the conventional TUR is restored. We verify our results both analytically and numerically in a specific solvable system.
Recently, it has been shown that there is a trade-off relation between thermodynamic cost and current fluctuations, referred to as the thermodynamic uncertainty relation (TUR). The TUR has been derived for various processes, such as discrete-time Mar
Thermodynamic uncertainty relation (TUR) provides a stricter bound for entropy production (EP) than that of the thermodynamic second law. This stricter bound can be utilized to infer the EP and derive other trade-off relations. Though the validity of
The thermodynamic uncertainty relation, originally derived for classical Markov-jump processes, provides a trade-off relation between precision and dissipation, deepening our understanding of the performance of quantum thermal machines. Here, we exam
In recent letter [Phys.~Rev.~Lett {bf 123}, 110602 (2019)], Y.~Hasegawa and T.~V.~Vu derived a thermodynamic uncertainty relation. But the bound of their relation is loose. In this comment, through minor changes, an improved bound is obtained. This i
The thermodynamic uncertainty relation (TUR) for underdamped dynamics has intriguing problems while its counterpart for overdamped dynamics has recently been derived. Even for the case of steady states, a proper way to match underdamped and overdampe