ﻻ يوجد ملخص باللغة العربية
We have developed two metrics related to AGN variability observables (time-lags, periodicity, and Structure Function (SF)) to evaluate LSST OpSim FBS 1.5, 1.6, 1.7 performance in AGN time-domain analysis. For this purpose, we generate an ensemble of AGN light curves based on AGN empirical relations and LSST OpSim cadences. Although our metrics show that denser LSST cadences produce more reliable time-lag, periodicity, and SF measurements, the discrepancies in the performance between different LSST OpSim cadences are not drastic based on Kullback-Leibler divergence. This is complementary to Yu and Richards results on DCR and SF metrics, extending them to include the point of view of AGN variability.
Here we present the evidence for periodicity of an optical emission detected in several AGN. Significant periodicity is found in light curves and radial velocity curves. We discuss possible mechanisms that could produce such periodic variability and
We present a framework to link and describe AGN variability on a wide range of timescales, from days to billions of years. In particular, we concentrate on the AGN variability features related to changes in black hole fuelling and accretion rate. In
We used data from the QUEST-La Silla Active Galactic Nuclei (AGN) variability survey to construct light curves for 208,583 sources over $sim 70$ deg$^2$, with a a limiting magnitude $r sim 21$. Each light curve has at least 40 epochs and a length of
With upcoming all sky surveys such as LSST poised to generate a deep digital movie of the optical sky, variability-based AGN selection will enable the construction of highly-complete catalogs with minimum contamination. In this study, we generate $g$
We present our statistical analysis of the connection between active galactic nuclei (AGN) variability and physical properties of the central supermassive black hole (SMBH). We constructed optical light curves using data from the QUEST-La Silla AGN v