Here we present the evidence for periodicity of an optical emission detected in several AGN. Significant periodicity is found in light curves and radial velocity curves. We discuss possible mechanisms that could produce such periodic variability and their implications. The results are consistent with possible detection of the orbital motion in proximity of the AGN central supermassive black holes.
We study variability of active galactic nuclei (AGNs) by using the deep optical multiband photometry data obtained from the Hyper Suprime-Cam Subaru Strategic Program (HSC SSP) survey in the COSMOS field. The images analyzed here were taken with 8, 1
0, 13, and 15 epochs over three years in the $g$, $r$, $i$, and $z$ bands, respectively. We identified 491 robust variable AGN candidates, down to $i=25$ mag and with redshift up to $4.26$. Ninety percent of the variability-selected AGNs are individually identified with the X-ray sources detected in the Chandra COSMOS Legacy survey. We investigate their properties in variability by using structure function analysis and find that the structure function for low-luminosity AGNs ($L_{mathrm{bol}}lesssim10^{45}$ erg s$^{-1}$) shows a positive correlation with luminosity, which is the opposite trend for the luminous quasars. This trend is likely to be caused by larger contribution of the host galaxy light for lower-luminosity AGNs. Using the model templates of galaxy spectra, we evaluate the amount of host galaxy contribution to the structure function analysis and find that dominance of the young stellar population is needed to explain the observed luminosity dependence. This suggests that low-luminosity AGNs at $0.8lesssim zlesssim1.8$ are predominantly hosted in star-forming galaxies. The X-ray stacking analysis reveals the significant emission from the individually X-ray undetected AGNs in our variability-selected sample. The stacked samples show very large hardness ratios in their stacked X-ray spectrum, which suggests that these optically variable sources have large soft X-ray absorption by dust-free gas.
We used data from the QUEST-La Silla Active Galactic Nuclei (AGN) variability survey to construct light curves for 208,583 sources over $sim 70$ deg$^2$, with a a limiting magnitude $r sim 21$. Each light curve has at least 40 epochs and a length of
$geq 200$ days. We implemented a Random Forest algorithm to classify our objects as either AGN or non-AGN according to their variability features and optical colors, excluding morphology cuts. We tested three classifiers, one that only includes variability features (RF1), one that includes variability features and also $r-i$ and $i-z$ colors (RF2), and one that includes variability features and also $g-r$, $r-i$, and $i-z$ colors (RF3). We obtained a sample of high probability candidates (hp-AGN) for each classifier, with 5,941 candidates for RF1, 5,252 candidates for RF2, and 4,482 candidates for RF3. We divided each sample according to their $g-r$ colors, defining blue ($g-rleq 0.6$) and red sub-samples ($g-r>0.6$). We find that most of the candidates known from the literature belong to the blue sub-samples, which is not necessarily surprising given that, unlike for many literature studies, we do not cut our sample to point-like objects. This means that we can select AGN that have a significant contribution from redshifted starlight in their host galaxies. In order to test the efficiency of our technique we performed spectroscopic follow-up, confirming the AGN nature of 44 among 54 observed sources (81.5% of efficiency). From the campaign we concluded that RF2 provides the purest sample of AGN candidates.
We present optical light curves from the Transiting Exoplanet Survey Satellite (TESS) for the archetypical dwarf active galactic nucleus (AGN) in the nearby galaxy NGC 4395 hosting a $sim 10^5,M_odot$ supermassive black hole (SMBH). Significant varia
bility is detected on timescales from weeks to hours before reaching the background noise level. The $sim$month-long, 30 minute-cadence, high-precision TESS light curve can be well fit by a simple damped random walk (DRW) model, with the damping timescale $tau_{rm DRW}$ constrained to be $2.3_{-0.7}^{+1.8}$~days ($1sigma$). NGC 4395 lies almost exactly on the extrapolation of the $tau_{rm DRW}-M_{rm BH}$ relation measured for AGNs with BH masses that are more than three orders of magnitude larger. The optical variability periodogram can be well fit by a broken power law with the high-frequency slope ($-1.88pm0.15$) and the characteristic timescale ($tau_{rm br}equiv 1/(2pi f_{rm br})=1.4_{-0.5}^{+1.9},$days) consistent with the DRW model within 1$sigma$. This work demonstrates the power of TESS light curves in identifying low-mass accreting SMBHs with optical variability, and a potential global $tau_{rm DRW}-M_{rm BH}$ relation that can be used to estimate SMBH masses with optical variability measurements.
Synchrotron self-absorption in active galactic nuclei (AGN) jets manifests itself as a time delay between flares observed at high and low radio frequencies. It is also responsible for the observing frequency dependent change in size and position of t
he apparent base of the jet, aka the core shift effect, detected with very long baseline interferometry (VLBI). We measure the time delays and the core shifts in 11 radio-loud AGN to estimate the speed of their jets without relying on multi-epoch VLBI kinematics analysis. The 15$-$8 GHz total flux density time lags are obtained using Gaussian process regression, the core shift values are measured using VLBI observations and adopted from the literature. A strong correlation is found between the apparent core shift and the observed time delay. Our estimate of the jet speed is higher than the apparent speed of the fastest VLBI components by the median coefficient of 1.4. The coefficient ranges for individual sources from 0.5 to 20. We derive Doppler factors, Lorentz factors and viewing angles of the jets, as well as the corresponding de-projected distance from the jet base to the core. The results support evidence for acceleration of the jets with bulk motion Lorentz factor $Gammapropto R^{0.52pm0.03}$ on de-projected scales $R$ of 0.5$-$500 parsecs.
Rapid, large amplitude variability at optical to X-ray wavelengths is now seen in an increasing number of Seyfert galaxies and luminous quasars. The variations imply a global change in accretion power, but are too rapid to be communicated by inflow t
hrough a standard thin accretion disc. Such discs are long known to have difficulty explaining the observed optical/UV emission from active galactic nuclei. Here we show that alternative models developed to explain these observations have larger scale heights and shorter inflow times. Accretion discs supported by magnetic pressure in particular are geometrically thick at all luminosities, with inflow times as short as the observed few year timescales in extreme variability events to date. Future time-resolved, multi-wavelength observations can distinguish between inflow through a geometrically thick disc as proposed here, and alternative scenarios of extreme reprocessing of a central source or instability-driven limit cycles.