ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Attack Framework on Graph Embedding Models with Limited Knowledge

147   0   0.0 ( 0 )
 نشر من قبل Heng Chang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the success of the graph embedding model in both academic and industry areas, the robustness of graph embedding against adversarial attack inevitably becomes a crucial problem in graph learning. Existing works usually perform the attack in a white-box fashion: they need to access the predictions/labels to construct their adversarial loss. However, the inaccessibility of predictions/labels makes the white-box attack impractical to a real graph learning system. This paper promotes current frameworks in a more general and flexible sense -- we demand to attack various kinds of graph embedding models with black-box driven. We investigate the theoretical connections between graph signal processing and graph embedding models and formulate the graph embedding model as a general graph signal process with a corresponding graph filter. Therefore, we design a generalized adversarial attacker: GF-Attack. Without accessing any labels and model predictions, GF-Attack can perform the attack directly on the graph filter in a black-box fashion. We further prove that GF-Attack can perform an effective attack without knowing the number of layers of graph embedding models. To validate the generalization of GF-Attack, we construct the attacker on four popular graph embedding models. Extensive experiments validate the effectiveness of GF-Attack on several benchmark datasets.

قيم البحث

اقرأ أيضاً

257 - Hanjun Dai , Hui Li , Tian Tian 2018
Deep learning on graph structures has shown exciting results in various applications. However, few attentions have been paid to the robustness of such models, in contrast to numerous research work for image or text adversarial attack and defense. In this paper, we focus on the adversarial attacks that fool the model by modifying the combinatorial structure of data. We first propose a reinforcement learning based attack method that learns the generalizable attack policy, while only requiring prediction labels from the target classifier. Also, variants of genetic algorithms and gradient methods are presented in the scenario where prediction confidence or gradients are available. We use both synthetic and real-world data to show that, a family of Graph Neural Network models are vulnerable to these attacks, in both graph-level and node-level classification tasks. We also show such attacks can be used to diagnose the learned classifiers.
Recent years have witnessed the emergence and development of graph neural networks (GNNs), which have been shown as a powerful approach for graph representation learning in many tasks, such as node classification and graph classification. The researc h on the robustness of these models has also started to attract attentions in the machine learning field. However, most of the existing work in this area focus on the GNNs for node-level tasks, while little work has been done to study the robustness of the GNNs for the graph classification task. In this paper, we aim to explore the vulnerability of the Hierarchical Graph Pooling (HGP) Neural Networks, which are advanced GNNs that perform very well in the graph classification in terms of prediction accuracy. We propose an adversarial attack framework for this task. Specifically, we design a surrogate model that consists of convolutional and pooling operators to generate adversarial samples to fool the hierarchical GNN-based graph classification models. We set the preserved nodes by the pooling operator as our attack targets, and then we perturb the attack targets slightly to fool the pooling operator in hierarchical GNNs so that they will select the wrong nodes to preserve. We show the adversarial samples generated from multiple datasets by our surrogate model have enough transferability to attack current state-of-art graph classification models. Furthermore, we conduct the robust train on the target models and demonstrate that the retrained graph classification models are able to better defend against the attack from the adversarial samples. To the best of our knowledge, this is the first work on the adversarial attack against hierarchical GNN-based graph classification models.
Knowledge graph embedding (KGE) is a technique for learning continuous embeddings for entities and relations in the knowledge graph.Due to its benefit to a variety of downstream tasks such as knowledge graph completion, question answering and recomme ndation, KGE has gained significant attention recently. Despite its effectiveness in a benign environment, KGE robustness to adversarial attacks is not well-studied. Existing attack methods on graph data cannot be directly applied to attack the embeddings of knowledge graph due to its heterogeneity. To fill this gap, we propose a collection of data poisoning attack strategies, which can effectively manipulate the plausibility of arbitrary targeted facts in a knowledge graph by adding or deleting facts on the graph. The effectiveness and efficiency of the proposed attack strategies are verified by extensive evaluations on two widely-used benchmarks.
221 - Xiao Zang , Yi Xie , Jie Chen 2020
Deep neural networks, while generalize well, are known to be sensitive to small adversarial perturbations. This phenomenon poses severe security threat and calls for in-depth investigation of the robustness of deep learning models. With the emergence of neural networks for graph structured data, similar investigations are urged to understand their robustness. It has been found that adversarially perturbing the graph structure and/or node features may result in a significant degradation of the model performance. In this work, we show from a different angle that such fragility similarly occurs if the graph contains a few bad-actor nodes, which compromise a trained graph neural network through flipping the connections to any targeted victim. Worse, the bad actors found for one graph model severely compromise other models as well. We call the bad actors ``anchor nodes and propose an algorithm, named GUA, to identify them. Thorough empirical investigations suggest an interesting finding that the anchor nodes often belong to the same class; and they also corroborate the intuitive trade-off between the number of anchor nodes and the attack success rate. For the dataset Cora which contains 2708 nodes, as few as six anchor nodes will result in an attack success rate higher than 80% for GCN and other three models.
Unsupervised node embedding methods (e.g., DeepWalk, LINE, and node2vec) have attracted growing interests given their simplicity and effectiveness. However, although these methods have been proved effective in a variety of applications, none of the e xisting work has analyzed the robustness of them. This could be very risky if these methods are attacked by an adversarial party. In this paper, we take the task of link prediction as an example, which is one of the most fundamental problems for graph analysis, and introduce a data positioning attack to node embedding methods. We give a complete characterization of attackers utilities and present efficient solutions to adversarial attacks for two popular node embedding methods: DeepWalk and LINE. We evaluate our proposed attack model on multiple real-world graphs. Experimental results show that our proposed model can significantly affect the results of link prediction by slightly changing the graph structures (e.g., adding or removing a few edges). We also show that our proposed model is very general and can be transferable across different embedding methods. Finally, we conduct a case study on a coauthor network to better understand our attack method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا