ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimation of Optimal Dynamic Treatment Regimes via Gaussian Process Emulation: A Technical Report

74   0   0.0 ( 0 )
 نشر من قبل Daniel Rodriguez Duque
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Causal inference of treatment effects is a challenging undertaking in it of itself; inference for sequential treatments leads to even more hurdles. In precision medicine, one additional ambitious goal may be to infer about effects of dynamic treatment regimes (DTRs) and to identify optimal DTRs. Conventional methods for inferring about DTRs involve powerful semi-parametric estimators. However, these are not without their strong assumptions. Dynamic Marginal Structural Models (MSMs) are one semi-parametric approach used to infer about optimal DTRs in a family of regimes. To achieve this, investigators are forced to model the expected outcome under adherence to a DTR in the family; relatively straightforward models may lead to bias in the optimum. One way to obviate this difficulty is to perform a grid search for the optimal DTR. Unfortunately, this approach becomes prohibitive as the complexity of regimes considered increases. In recently developed Bayesian methods for dynamic MSMs, computational challenges may be compounded by the fact that at each grid point, a posterior mean must be calculated. We propose a manner by which to alleviate modelling difficulties for DTRs by using Gaussian process optimization. More precisely, we show how to pair this optimization approach with robust estimators for the causal effect of adherence to a DTR to identify optimal DTRs. We examine how to find the optimum in complex, multi-modal settings which are not generally addressed in the DTR literature. We further evaluate the sensitivity of the approach to a variety of modeling assumptions in the Gaussian process.



قيم البحث

اقرأ أيضاً

In clinical practice, physicians make a series of treatment decisions over the course of a patients disease based on his/her baseline and evolving characteristics. A dynamic treatment regime is a set of sequential decision rules that operationalizes this process. Each rule corresponds to a decision point and dictates the next treatment action based on the accrued information. Using existing data, a key goal is estimating the optimal regime, that, if followed by the patient population, would yield the most favorable outcome on average. Q- and A-learning are two main approaches for this purpose. We provide a detailed account of these methods, study their performance, and illustrate them using data from a depression study.
154 - Yi Ji , Simon Mak , Derek Soeder 2021
We present a novel Graphical Multi-fidelity Gaussian Process (GMGP) model that uses a directed acyclic graph to model dependencies between multi-fidelity simulation codes. The proposed model is an extension of the Kennedy-OHagan model for problems wh ere different codes cannot be ranked in a sequence from lowest to highest fidelity.
There is a fast-growing literature on estimating optimal treatment regimes based on randomized trials or observational studies under a key identifying condition of no unmeasured confounding. Because confounding by unmeasured factors cannot generally be ruled out with certainty in observational studies or randomized trials subject to noncompliance, we propose a general instrumental variable approach to learning optimal treatment regimes under endogeneity. Specifically, we establish identification of both value function $E[Y_{mathcal{D}(L)}]$ for a given regime $mathcal{D}$ and optimal regimes $text{argmax}_{mathcal{D}} E[Y_{mathcal{D}(L)}]$ with the aid of a binary instrumental variable, when no unmeasured confounding fails to hold. We also construct novel multiply robust classification-based estimators. Furthermore, we propose to identify and estimate optimal treatment regimes among those who would comply to the assigned treatment under a standard monotonicity assumption. In this latter case, we establish the somewhat surprising result that complier optimal regimes can be consistently estimated without directly collecting compliance information and therefore without the complier average treatment effect itself being identified. Our approach is illustrated via extensive simulation studies and a data application on the effect of child rearing on labor participation.
78 - Shuxiao Chen , Bo Zhang 2021
Estimating dynamic treatment regimes (DTRs) from retrospective observational data is challenging as some degree of unmeasured confounding is often expected. In this work, we develop a framework of estimating properly defined optimal DTRs with a time- varying instrumental variable (IV) when unmeasured covariates confound the treatment and outcome, rendering the potential outcome distributions only partially identified. We derive a novel Bellman equation under partial identification, use it to define a generic class of estimands (termed IV-optimal DTRs), and study the associated estimation problem. We then extend the IV-optimality framework to tackle the policy improvement problem, delivering IV-improved DTRs that are guaranteed to perform no worse and potentially better than a pre-specified baseline DTR. Importantly, our IV-improvement framework opens up the possibility of strictly improving upon DTRs that are optimal under the no unmeasured confounding assumption (NUCA). We demonstrate via extensive simulations the superior performance of IV-optimal and IV-improved DTRs over the DTRs that are optimal only under the NUCA. In a real data example, we embed retrospective observational registry data into a natural, two-stage experiment with noncompliance using a time-varying IV and estimate useful IV-optimal DTRs that assign mothers to high-level or low-level neonatal intensive care units based on their prognostic variables.
We derive new estimators of an optimal joint testing and treatment regime under the no direct effect (NDE) assumption that a given laboratory, diagnostic, or screening test has no effect on a patients clinical outcomes except through the effect of th e test results on the choice of treatment. We model the optimal joint strategy using an optimal regime structural nested mean model (opt-SNMM). The proposed estimators are more efficient than previous estimators of the parameters of an opt-SNMM because they efficiently leverage the `no direct effect (NDE) of testing assumption. Our methods will be of importance to decision scientists who either perform cost-benefit analyses or are tasked with the estimation of the `value of information supplied by an expensive diagnostic test (such as an MRI to screen for lung cancer).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا