ﻻ يوجد ملخص باللغة العربية
This paper considers wave-based imaging through a heterogeneous (random) scattering medium. The goal is to estimate the support of the reflectivity function of a remote scene from measurements of the backscattered wave field. The proposed imaging methodology is based on the coherent interferometric (CINT) approach that exploits the local empirical cross correlations of the measurements of the wave field. The standard CINT images are known to be robust (statistically stable) with respect to the random medium, but the stability comes at the expense of a loss of resolution. This paper shows that a two-point CINT function contains the information needed to obtain statistically stable and high-resolution images. Different methods to build such images are presented, theoretically analyzed and compared with the standard imaging approaches using numerical simulations. The first method involves a phase-retrieval step to extract the reflectivity function from the modulus of its Fourier transform. The second method involves the evaluation of the leading eigenvector of the two-point CINT imaging function seen as the kernel of a linear operator. The third method uses an optimization step to extract the reflectivity function from some cross products of its Fourier transform. The presentation is for the synthetic aperture radar data acquisition setup, where a moving sensor probes the scene with signals emitted periodically and records the resulting backscattered wave. The generalization to other imaging setups, with passive or active arrays of sensors, is discussed briefly.
Intensity interferometry (II) exploits the second-order correlation to acquire the spatial frequency information of an object, which has been used to observe distant stars since 1950s. However, due to unreliability of employed imaging reconstruction
It is well-known that the degeneracy of two-phase microstructures with the same volume fraction and two-point correlation function $S_2(mathbf{r})$ is generally infinite. To elucidate the degeneracy problem explicitly, we examine Debye random media,
We analyze how light-induced coherent population oscillations and ground-state Zeeman coherence in an atomic medium with degenerate two-level transitions can modify spectra of applied cw resonant radiation at the sub-mW power level. The use of mutual
This paper is concerned with the development of imaging methods to localize sources or reflectors in inhomogeneous moving media with acoustic waves that have travelled through them. A typical example is the localization of broadband acoustic sources
This is the first of a series of papers devoted to develop a microscopical approach to the dipole emission process and its relation to coherent transport in random media. In this Letter, we deduce general expressions for the decay rate of spontaneous