ﻻ يوجد ملخص باللغة العربية
We analyze how light-induced coherent population oscillations and ground-state Zeeman coherence in an atomic medium with degenerate two-level transitions can modify spectra of applied cw resonant radiation at the sub-mW power level. The use of mutually coherent optical fields and heterodyne detection schemes allows spectral resolution at kHz level, well below the laser linewidth. We find that ground-state Zeeman coherence may facilitate nonlinear wave mixing while coherent population oscillations are responsible for phase and amplitude modulation of the applied fields. Conditions for the generation of new optical fields by nonlinear wave mixing in degenerate two-level atomic media are formulated.
We present results of a study of four-wave mixing in Rb vapour with highly nonlinear susceptibility, using both homodyne and heterodyne detection. We demonstrate that the spectra have different appearances for media possessing electromagnetically ind
Spectroscopic features revealing the coherent interaction of a degenerate two-level atomic system with two optical fields are examined. A model for the numerical calculation of the response of a degenerate two-level system to the action of an arbitra
Coherent diffusion pertains to the motion of atomic dipoles experiencing frequent collisions in vapor while maintaining their coherence. Recent theoretical and experimental studies on the effect of coherent diffusion on key Raman processes, namely Ra
In this letter we investigate the possibility to attain strongly confined atomic localization using interacting Rydberg atoms in a Coherent Population Trapping (CPT) ladder configuration, where a standing-wave (SW) is used as a coupling field in the
When a resonant laser sent on an optically thick cold atomic cloud is abruptly switched off, a coherent flash of light is emitted in the forward direction. This transient phenomenon is observed due to the highly resonant character of the atomic scatt