ﻻ يوجد ملخص باللغة العربية
In the framework of time-dependent density functional theory (TDDFT), the exact exchange-correlation (xc) kernel $f_{xc}(n,q,omega)$ determines the ground-state energy, excited-state energies, lifetimes, and the time-dependent linear density response of any many-electron system. The recently developed MCP07 xc kernel $f_{xc}(n,q,omega)$ of A. Ruzsinszky et al. [Phys. Rev. B 101, 245135 (2020)] yields excellent uniform electron gas (UEG) ground-state energies and plausible plasmon lifetimes. As MCP07 is constructed to describe $f_{xc}$ of the UEG, it cannot capture optical properties of real materials. To verify this claim, we follow Nazarov et al. [Phys. Rev. Lett. 102, 113001 (2009)] to construct the long-range, dynamic xc kernel, $lim_{qto 0}f_{xc}(n,q,omega) = -alpha(omega)e^2/q^2$, of a weakly inhomogeneous electron gas, using MCP07 and other common xc kernels. The strong wavevector and frequency dependence of the ultranonlocality coefficient $alpha(omega)$ is demonstrated for a variety of simple metals and semiconductors. We examine how imposing exact constraints on an approximate kernel shapes $alpha(omega)$. Comparisons to kernels derived from correlated-wavefunction calculations are drawn.
We propose a spatially and temporally nonlocal exchange-correlation (xc) kernel for the spin-unpolarized fluid phase of ground-state jellium, for use in time-dependent density functional and linear response calculations. The kernel is constructed to
A curious behavior of electron correlation energy is explored. Namely, the correlation energy is the energy that tends to drive the system toward that of the uniform electron gas. As such, the energy assumes its maximum value when a gradient of densi
We review the theory and application of adiabatic exchange-correlation (xc-) kernels for ab initio calculations of ground state energies and quasiparticle excitations within the frameworks of the adiabatic connection fluctuation dissipation theorem a
An alternative type of approximation for the exchange and correlation functional in density functional theory is proposed. This approximation depends on a variable $u$ that is able to detect inhomogeneities in the electron density $rho$ without using
Accurately describing excited states within Kohn-Sham (KS) density functional theory (DFT), particularly those which induce ionization and charge transfer, remains a great challenge. Common exchange-correlation (xc) approximations are unreliable for