ﻻ يوجد ملخص باللغة العربية
The adiabatic transport properties of U(1) invariant systems are determined by the dependence of the ground state energy on the twisted boundary condition. We examine a one-dimensional tight-binding model in the presence of a single defect and find that the ground state energy of the model shows a universal dependence on the twist angle that can be fully characterized by the transmission coefficient of the scattering by the defect. We identify resulting pathological behaviors of Drude weights in the large system size limit: (i) both the linear and nonlinear Drude weights depend on the twist angle and (ii) the $N$-th order Drude weight diverges proportionally to the $(N-1)$-th power of the system size. To clarify the physical implication of the divergence, we simulate the real-time dynamics of the tight-binding model under a static electric field and show that the divergence does not necessarily imply the large current. Furthermore, we address the relation between our results and the boundary conformal field theory.
We address the shot noise in the tunneling current through a localized spin, pertaining to recent experiments on magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering processes contribute vitally
Using a tight-binding model, we study a line defect in graphene where a bulk energy gap is opened by sublattice symmetry breaking. It is found that sublattice symmetry breaking may induce many configurations that correspond to different band spectra.
We have fabricated and studied a ballistic one-dimensional p-type quantum wire using an undoped AlGaAs/GaAs heterostructure. The absence of modulation doping eliminates remote ionized impurity scattering and allows high mobilities to be achieved over
We experimentally study many-body localization (MBL) with ultracold atoms in a weak one-dimensional quasiperiodic potential, which in the noninteracting limit exhibits an intermediate phase that is characterized by a mobility edge. We measure the tim
In one of the most celebrated examples of the theory of universal critical phenomena, the phase transition to the superfluid state of $^{4}$He belongs to the same three dimensional $mathrm{O}(2)$ universality class as the onset of ferromagnetism in a