ترغب بنشر مسار تعليمي؟ اضغط هنا

Adiabatic transport in one-dimensional systems with a single defect

77   0   0.0 ( 0 )
 نشر من قبل Haruki Watanabe
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The adiabatic transport properties of U(1) invariant systems are determined by the dependence of the ground state energy on the twisted boundary condition. We examine a one-dimensional tight-binding model in the presence of a single defect and find that the ground state energy of the model shows a universal dependence on the twist angle that can be fully characterized by the transmission coefficient of the scattering by the defect. We identify resulting pathological behaviors of Drude weights in the large system size limit: (i) both the linear and nonlinear Drude weights depend on the twist angle and (ii) the $N$-th order Drude weight diverges proportionally to the $(N-1)$-th power of the system size. To clarify the physical implication of the divergence, we simulate the real-time dynamics of the tight-binding model under a static electric field and show that the divergence does not necessarily imply the large current. Furthermore, we address the relation between our results and the boundary conformal field theory.



قيم البحث

اقرأ أيضاً

82 - S. Pradhan , J. Fransson 2018
We address the shot noise in the tunneling current through a localized spin, pertaining to recent experiments on magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering processes contribute vitally to the noise spectrum. The spin-correlated scattering processes provide an additional contribution to the Landauer-Buttiker shot noise expression, accounting for correlations between the tunneling electrons and the localized spin moment. By calculating the Fano factor, we show that both super- and sub-Poissonian shot noise can be described within our approach. Our theory provides transparent insights to noise spectroscopy, consistent with recent experiments using local probing techniques on magnetic atoms.
Using a tight-binding model, we study a line defect in graphene where a bulk energy gap is opened by sublattice symmetry breaking. It is found that sublattice symmetry breaking may induce many configurations that correspond to different band spectra. In particular, a gapless state is observed for a configuration which hold a mirror symmetry with respect to the line defect. We find that this gapless state originates from the line defect and is independent of the width of the graphene ribbon, the location of the line defect, and the potentials in the edges of the ribbon. In particular, the gapless state can be controlled by the gate voltage embedded below the line defect. Finally, this result is supported with conductance calculations. This study shows how a quantum channel could be constructed using a line defect, and how the quantum channel can be controlled by tuning the gate voltage embedded below the line defect.
We have fabricated and studied a ballistic one-dimensional p-type quantum wire using an undoped AlGaAs/GaAs heterostructure. The absence of modulation doping eliminates remote ionized impurity scattering and allows high mobilities to be achieved over a wide range of hole densities, and in particular, at very low densities where carrier-carrier interactions are strongest. The device exhibits clear quantized conductance plateaus with highly stable gate characteristics. These devices provide opportunities for studying spin-orbit coupling and interaction effects in mesoscopic hole systems in the strong interaction regime where rs > 10.
We experimentally study many-body localization (MBL) with ultracold atoms in a weak one-dimensional quasiperiodic potential, which in the noninteracting limit exhibits an intermediate phase that is characterized by a mobility edge. We measure the tim e evolution of an initial charge density wave after a quench and analyze the corresponding relaxation exponents. We find clear signatures of MBL, when the corresponding noninteracting model is deep in the localized phase. We also critically compare and contrast our results with those from a tight-binding Aubry-Andr{e} model, which does not exhibit a single-particle intermediate phase, in order to identify signatures of a potential many-body intermediate phase.
180 - P-F Duc , M.Savard , M. Petrescu 2014
In one of the most celebrated examples of the theory of universal critical phenomena, the phase transition to the superfluid state of $^{4}$He belongs to the same three dimensional $mathrm{O}(2)$ universality class as the onset of ferromagnetism in a lattice of classical spins with $XY$ symmetry. Below the transition, the superfluid density $rho_s$ and superfluid velocity $v_s$ increase as power laws of temperature described by a universal critical exponent constrained to be equal by scale invariance. As the dimensionality is reduced towards one dimension (1D), it is expected that enhanced thermal and quantum fluctuations preclude long-range order, thereby inhibiting superfluidity. We have measured the flow rate of liquid helium and deduced its superfluid velocity in a capillary flow experiment occurring in single $30~$nm long nanopores with radii ranging down from 20~nm to 3~nm. As the pore size is reduced towards the 1D limit, we observe: {it i)} a suppression of the pressure dependence of the superfluid velocity; {it ii)} a temperature dependence of $v_{s}$ that surprisingly can be well-fitted by a powerlaw with a single exponent over a broad range of temperatures; and {it iii)} decreasing critical velocities as a function of radius for channel sizes below $R simeq 20$~nm, in stark contrast with what is observed in micron sized channels. We interpret these deviations from bulk behaviour as signaling the crossover to a quasi-1D state whereby the size of a critical topological defect is cut off by the channel radius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا