ترغب بنشر مسار تعليمي؟ اضغط هنا

Riesz transform and commutators in the Dunkl setting

199   0   0.0 ( 0 )
 نشر من قبل Ji Li
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we characterise the pointwise size and regularity estimates for the Dunkl Riesz transform kernel involving both the Euclidean metric and the Dunkl metric, where the two metrics are not equivalent. We further establish a suitable version of the pointwise lower bound via the Euclidean metric and then characterise boundedness of commutator of the Dunkl Riesz transform via the BMO space associated with the Euclidean metric and the Dunkl measure. This shows that BMO space via the Euclidean metric is the suitable one associated to the Dunkl setting but not the one via the Dunkl metric.



قيم البحث

اقرأ أيضاً

It is shown that product BMO of Chang and Fefferman, defined on the product of Euclidean spaces can be characterized by the multiparameter commutators of Riesz transforms. This extends a classical one-parameter result of Coifman, Rochberg, and Weiss, and at the same time extends the work of Lacey and Ferguson and Lacey and Terwilleger on multiparameter commutators with Hilbert transforms. The method of proof requires the real-variable methods throughout, which is new in the multi-parameter context.
We give a simple proof of L^p boundedness of iterated commutators of Riesz transforms and a product BMO function. We use a representation of the Riesz transforms by means of simple dyadic operators - dyadic shifts - which in turn reduces the estimate quickly to paraproduct estimates.
172 - Zhijie Fan , Michael Lacey , Ji Li 2021
We establish the necessary and sufficient conditions for those symbols $b$ on the Heisenberg group $mathbb H^{n}$ for which the commutator with the Riesz transform is of Schatten class. Our main result generalises classical results of Peller, Janson- -Wolff and Rochberg--Semmes, which address the same question in the Euclidean setting. Moreover, the approach that we develop bypasses the use of Fourier analysis, and can be applied to characterise that the commutator is of the Schatten class in other settings beyond Euclidean.
Let $Dinmathbb{N}$, $qin[2,infty)$ and $(mathbb{R}^D,|cdot|,dx)$ be the Euclidean space equipped with the $D$-dimensional Lebesgue measure. In this article, via an auxiliary function space $mathrm{WE}^{1,,q}(mathbb R^D)$ defined via wavelet expansion s, the authors establish the Riesz transform characterization of Triebel-Lizorkin spaces $dot{F}^0_{1,,q}(mathbb{R}^D)$. As a consequence, the authors obtain the Fefferman-Stein decomposition of Triebel-Lizorkin spaces $dot{F}^0_{infty,,q}(mathbb{R}^D)$. Finally, the authors give an explicit example to show that $dot{F}^0_{1,,q}(mathbb{R}^D)$ is strictly contained in $mathrm{WE}^{1,,q}(mathbb{R}^D)$ and, by duality, $mathrm{WE}^{infty,,q}(mathbb{R}^D)$ is strictly contained in $dot{F}^0_{infty,,q}(mathbb{R}^D)$. Although all results when $D=1$ were obtained by C.-C. Lin et al. [Michigan Math. J. 62 (2013), 691-703], as was pointed out by C.-C. Lin et al., the approach used in the case $D=1$ can not be applied to the case $Dge2$, which needs some new skills.
In this paper we consider $L^p$ boundedness of some commutators of Riesz transforms associated to Schr{o}dinger operator $P=-Delta+V(x)$ on $mathbb{R}^n, ngeq 3$. We assume that $V(x)$ is non-zero, nonnegative, and belongs to $B_q$ for some $q geq n/ 2$. Let $T_1=(-Delta+V)^{-1}V, T_2=(-Delta+V)^{-1/2}V^{1/2}$ and $T_3=(-Delta+V)^{-1/2} abla$. We obtain that $[b,T_j] (j=1,2,3)$ are bounded operators on $L^p(mathbb{R}^n)$ when $p$ ranges in a interval, where $b in mathbf{BMO}(mathbb{R}^n)$. Note that the kernel of $T_j (j=1,2,3)$ has no smoothness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا