ترغب بنشر مسار تعليمي؟ اضغط هنا

Redox hysteresis of super-Earth exoplanets from magma ocean circulation

167   0   0.0 ( 0 )
 نشر من قبل Tim Lichtenberg
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tim Lichtenberg




اسأل ChatGPT حول البحث

Internal redox reactions may irreversibly alter the mantle composition and volatile inventory of terrestrial and super-Earth exoplanets and affect the prospects for atmospheric observations. The global efficacy of these mechanisms, however, hinges on the transfer of reduced iron from the molten silicate mantle to the metal core. Scaling analysis indicates that turbulent diffusion in the internal magma oceans of sub-Neptunes can kinetically entrain liquid iron droplets and quench core formation. This suggests that the chemical equilibration between core, mantle, and atmosphere may be energetically limited by convective overturn in the magma flow. Hence, molten super-Earths possibly retain a compositional memory of their accretion path. Redox control by magma ocean circulation is positively correlated with planetary heat flow, internal gravity, and planet size. The presence and speciation of remanent atmospheres, surface mineralogy, and core mass fraction of atmosphere-stripped exoplanets may thus constrain magma ocean dynamics.

قيم البحث

اقرأ أيضاً

Highly volcanic exoplanets, which can be variously characterized as lava worlds, magma ocean worlds, or super-Ios are high priority targets for investigation. The term lava world may refer to any planet with extensive surface lava lakes, while the te rm magma ocean world refers to planets with global or hemispherical magma oceans at their surface. Highly volcanic planets, including super-Ios, may simply have large, or large numbers of, active explosive or extrusive volcanoes of any form. They are plausibly highly diverse, with magmatic processes across a wide range of compositions, temperatures, activity rates, volcanic eruption styles, and background gravitational force magnitudes. Worlds in all these classes are likely to be the most characterizable rocky exoplanets in the near future due to observational advantages that stem from their preferential occurrence in short orbital periods and their bright day-side flux in the infrared. Transit techniques should enable a level of characterization of these worlds analogous to hot Jupiters. Understanding processes on highly volcanic worlds is critical to interpret imminent observations. The physical states of these worlds are likely to inform not just geodynamic processes, but also planet formation, and phenomena crucial to habitability. Volcanic and magmatic activity uniquely allows chemical investigation of otherwise spectroscopically inaccessible interior compositions. These worlds will be vital to assess the degree to which planetary interior element abundances compare to their stellar hosts, and may also offer pathways to study both the very young Earth, and the very early form of many silicate planets where magma oceans and surface lava lakes are expected to be more prevalent. We suggest that highly volcanic worlds may become second only to habitable worlds in terms of both scientific and public long-term interest.
The magma ocean period was a critical phase determining how Earth atmosphere developed into habitability. However there are major uncertainties in the role of key processes such as outgassing from the planetary interior and escape of species to space that play a major role in determining the atmosphere of early Earth. We investigate the influence of outgassing of various species and escape of H$_2$ for different mantle redox states upon the composition and evolution of the atmosphere for the magma ocean period. We include an important new atmosphere-interior coupling mechanism namely the redox evolution of the mantle which strongly affects the outgassing of species. We simulate the volatile outgassing and chemical speciation at the surface for various redox states of the mantle by employing a C-H-O based chemical speciation model combined with an interior outgassing model. We then apply a line-by-line radiative transfer model to study the remote appearance of the planet in terms of the infrared emission and transmission. Finally, we use a parameterized diffusion-limited and XUV energy-driven atmospheric escape model to calculate the loss of H$_2$ to space. We have simulated the thermal emission and transmission spectra for reduced or oxidized atmospheres present during the magma ocean period of Earth. Reduced or thin atmospheres consisting of H$_2$ in abundance emit more radiation to space and have larger effective height as compared to oxidized or thick atmospheres which are abundant in H$_2$O and CO$_2$. We obtain the outgassing rates of H2 from the mantle into the atmosphere to be a factor of ten times larger than the rates of diffusion-limited escape to space. Our work presents useful insight into the development of Earth atmosphere during the magma ocean period as well as input to guide future studies discussing exoplanetary interior compositions.
The earliest atmospheres of rocky planets originate from extensive volatile release during magma ocean epochs that occur during assembly of the planet. These establish the initial distribution of the major volatile elements between different chemical reservoirs that subsequently evolve via geological cycles. Current theoretical techniques are limited in exploring the anticipated range of compositional and thermal scenarios of early planetary evolution, even though these are of prime importance to aid astronomical inferences on the environmental context and geological history of extrasolar planets. Here, we present a coupled numerical framework that links an evolutionary, vertically-resolved model of the planetary silicate mantle with a radiative-convective model of the atmosphere. Using this method we investigate the early evolution of idealized Earth-sized rocky planets with end-member, clear-sky atmospheres dominated by either H$_2$, H$_2$O, CO$_2$, CH$_4$, CO, O$_2$, or N$_2$. We find central metrics of early planetary evolution, such as energy gradient, sequence of mantle solidification, surface pressure, or vertical stratification of the atmosphere, to be intimately controlled by the dominant volatile and outgassing history of the planet. Thermal sequences fall into three general classes with increasing cooling timescale: CO, N$_2$, and O$_2$ with minimal effect, H$_2$O, CO$_2$, and CH$_4$ with intermediate influence, and H$_2$ with several orders of magnitude increase in solidification time and atmosphere vertical stratification. Our numerical experiments exemplify the capabilities of the presented modeling framework and link the interior and atmospheric evolution of rocky exoplanets with multi-wavelength astronomical observations.
167 - Kristen Menou 2014
The carbon-silicate cycle regulates the atmospheric $CO_2$ content of terrestrial planets on geological timescales through a balance between the rates of $CO_2$ volcanic outgassing and planetary intake from rock weathering. It is thought to act as an efficient climatic thermostat on Earth and, by extension, on other habitable planets. If, however, the weathering rate increases with the atmospheric $CO_2$ content, as expected on planets lacking land vascular plants, the carbon-silicate cycle feedback can become severely limited. Here we show that Earth-like planets receiving less sunlight than current Earth may no longer possess a stable warm climate but instead repeatedly cycle between unstable glaciated and deglaciated climatic states. This has implications for the search for life on exoplanets in the habitable zone of nearby stars.
Of profound astrobiological interest is that not only does Enceladus have a water ocean, but it also appears to be salty, important for its likely habitability. Here, we investigate how salinity affects ocean dynamics and equilibrium ice shell geomet ry and use knowledge of ice shell geometry and tidal heating rates to help constrain ocean salinity. We show that the vertical overturning circulation of the ocean, driven from above by melting and freezing and the temperature dependence of the freezing point of water on pressure, has opposing signs at very low and very high salinities. In both cases, heat and freshwater converges toward the equator, where the ice is thick, acting to homogenize thickness variations. In order to maintain observed ice thickness variations, ocean heat convergence should not overwhelm heat loss rates through the equatorial ice sheet. This can only happen when the oceans salinity has intermediate values, order $20$~psu. In this case polar-sinking driven by meridional temperature variations is largely canceled by equatorial-sinking circulation driven by salinity variations and a consistent ocean circulation, ice shell geometry and tidal heating rate can be achieved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا