ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved OOD Generalization via Adversarial Training and Pre-training

256   0   0.0 ( 0 )
 نشر من قبل Mingyang Yi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, learning a model that generalizes well on out-of-distribution (OOD) data has attracted great attention in the machine learning community. In this paper, after defining OOD generalization via Wasserstein distance, we theoretically show that a model robust to input perturbation generalizes well on OOD data. Inspired by previous findings that adversarial training helps improve input-robustness, we theoretically show that adversarially trained models have converged excess risk on OOD data, and empirically verify it on both image classification and natural language understanding tasks. Besides, in the paradigm of first pre-training and then fine-tuning, we theoretically show that a pre-trained model that is more robust to input perturbation provides a better initialization for generalization on downstream OOD data. Empirically, after fine-tuning, this better-initialized model from adversarial pre-training also has better OOD generalization.



قيم البحث

اقرأ أيضاً

Adversarial attack has recently become a tremendous threat to deep learning models. To improve the robustness of machine learning models, adversarial training, formulated as a minimax optimization problem, has been recognized as one of the most effec tive defense mechanisms. However, the non-convex and non-concave property poses a great challenge to the minimax training. In this paper, we empirically demonstrate that the commonly used PGD attack may not be optimal for inner maximization, and improved inner optimizer can lead to a more robust model. Then we leverage a learning-to-learn (L2L) framework to train an optimizer with recurrent neural networks, providing update directions and steps adaptively for the inner problem. By co-training optimizers parameters and models weights, the proposed framework consistently improves the model robustness over PGD-based adversarial training and TRADES.
While adversarial training can improve robust accuracy (against an adversary), it sometimes hurts standard accuracy (when there is no adversary). Previous work has studied this tradeoff between standard and robust accuracy, but only in the setting wh ere no predictor performs well on both objectives in the infinite data limit. In this paper, we show that even when the optimal predictor with infinite data performs well on both objectives, a tradeoff can still manifest itself with finite data. Furthermore, since our construction is based on a convex learning problem, we rule out optimization concerns, thus laying bare a fundamental tension between robustness and generalization. Finally, we show that robust self-training mostly eliminates this tradeoff by leveraging unlabeled data.
While deep neural networks have achieved remarkable success in various computer vision tasks, they often fail to generalize to new domains and subtle variations of input images. Several defenses have been proposed to improve the robustness against th ese variations. However, current defenses can only withstand the specific attack used in training, and the models often remain vulnerable to other input variations. Moreover, these methods often degrade performance of the model on clean images and do not generalize to out-of-domain samples. In this paper we present Generative Adversarial Training, an approach to simultaneously improve the models generalization to the test set and out-of-domain samples as well as its robustness to unseen adversarial attacks. Instead of altering a low-level pre-defined aspect of images, we generate a spectrum of low-level, mid-level and high-level changes using generative models with a disentangled latent space. Adversarial training with these examples enable the model to withstand a wide range of attacks by observing a variety of input alterations during training. We show that our approach not only improves performance of the model on clean images and out-of-domain samples but also makes it robust against unforeseen attacks and outperforms prior work. We validate effectiveness of our method by demonstrating results on various tasks such as classification, segmentation and object detection.
Adversarial training can considerably robustify deep neural networks to resist adversarial attacks. However, some works suggested that adversarial training might comprise the privacy-preserving and generalization abilities. This paper establishes and quantifies the privacy-robustness trade-off and generalization-robustness trade-off in adversarial training from both theoretical and empirical aspects. We first define a notion, {it robustified intensity} to measure the robustness of an adversarial training algorithm. This measure can be approximate empirically by an asymptotically consistent empirical estimator, {it empirical robustified intensity}. Based on the robustified intensity, we prove that (1) adversarial training is $(varepsilon, delta)$-differentially private, where the magnitude of the differential privacy has a positive correlation with the robustified intensity; and (2) the generalization error of adversarial training can be upper bounded by an $mathcal O(sqrt{log N}/N)$ on-average bound and an $mathcal O(1/sqrt{N})$ high-probability bound, both of which have positive correlations with the robustified intensity. Additionally, our generalization bounds do not explicitly rely on the parameter size which would be prohibitively large in deep learning. Systematic experiments on standard datasets, CIFAR-10 and CIFAR-100, are in full agreement with our theories. The source code package is available at url{https://github.com/fshp971/RPG}.
Adversarially trained models exhibit a large generalization gap: they can interpolate the training set even for large perturbation radii, but at the cost of large test error on clean samples. To investigate this gap, we decompose the test risk into i ts bias and variance components and study their behavior as a function of adversarial training perturbation radii ($varepsilon$). We find that the bias increases monotonically with $varepsilon$ and is the dominant term in the risk. Meanwhile, the variance is unimodal as a function of $varepsilon$, peaking near the interpolation threshold for the training set. This characteristic behavior occurs robustly across different datasets and also for other robust training procedures such as randomized smoothing. It thus provides a test for proposed explanations of the generalization gap. We find that some existing explanations fail this test--for instance, by predicting a monotonically increasing variance curve. This underscores the power of bias-variance decompositions in modern settings-by providing two measurements instead of one, they can rule out more explanations than test accuracy alone. We also show that bias and variance can provide useful guidance for scalably reducing the generalization gap, highlighting pre-training and unlabeled data as promising routes.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا