ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond $0$ and $infty$: A solution to the Barge Entropy Conjecture

98   0   0.0 ( 0 )
 نشر من قبل Jan P. Boronski
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the entropy conjecture of M. Barge from 1989: for every $rin [0,infty]$ there exists a pseudo-arc homeomorphism $h$, whose topological entropy is $r$. Until now all pseudo-arc homeomorphisms with known entropy have had entropy $0$ or $infty$.



قيم البحث

اقرأ أيضاً

Makienkos conjecture, a proposed addition to Sullivans dictionary, can be stated as follows: The Julia set of a rational function R has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienkos conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational functions whose Julia set is an indecomposable continuum.
Let $(X, T)$ be a topological dynamical system (TDS), and $h (T, K)$ the topological entropy of a subset $K$ of $X$. $(X, T)$ is {it lowerable} if for each $0le hle h (T, X)$ there is a non-empty compact subset with entropy $h$; is {it hereditarily l owerable} if each non-empty compact subset is lowerable; is {it hereditarily uniformly lowerable} if for each non-empty compact subset $K$ and each $0le hle h (T, K)$ there is a non-empty compact subset $K_hsubseteq K$ with $h (T, K_h)= h$ and $K_h$ has at most one limit point. It is shown that each TDS with finite entropy is lowerable, and that a TDS $(X, T)$ is hereditarily uniformly lowerable if and only if it is asymptotically $h$-expansive.
137 - Bidyut Sanki , Arya Vadnere 2019
A pair $(alpha, beta)$ of simple closed geodesics on a closed and oriented hyperbolic surface $M_g$ of genus $g$ is called a filling pair if the complementary components of $alphacupbeta$ in $M_g$ are simply connected. The length of a filling pair is defined to be the sum of their individual lengths. In cite{Aou}, Aougab-Huang conjectured that the length of any filling pair on $M$ is at least $frac{m_{g}}{2}$, where $m_{g}$ is the perimeter of the regular right-angled hyperbolic $left(8g-4right)$-gon. In this paper, we prove a generalized isoperimetric inequality for disconnected regions and we prove the Aougab-Huang conjecture as a corollary.
Menger conjectured that subsets of $mathbb R$ with the Menger property must be $sigma$-compact. While this is false when there is no restriction on the subsets of $mathbb R$, for projective subsets it is known to follow from the Axiom of Projective D eterminacy, which has considerable large cardinal consistency strength. We show that the perfect set version of the Open Graph Axiom for projective sets of reals, with consistency strength only an inaccessible cardinal, also implies Mengers conjecture restricted to this family of subsets of $mathbb R$.
101 - Huiqiu Lin , Bo Ning 2019
In 1990, Cvetkovi{c} and Rowlinson [The largest eigenvalue of a graph: a survey, Linear Multilinear Algebra 28(1-2) (1990), 3--33] conjectured that among all outerplanar graphs on $n$ vertices, $K_1vee P_{n-1}$ attains the maximum spectral radius. In 2017, Tait and Tobin [Three conjectures in extremal spectral graph theory, J. Combin. Theory, Ser. B 126 (2017) 137-161] confirmed the conjecture for sufficiently large values of $n$. In this article, we show the conjecture is true for all $ngeq2$ except for $n=6$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا