ترغب بنشر مسار تعليمي؟ اضغط هنا

A conjecture on the lengths of filling pairs

138   0   0.0 ( 0 )
 نشر من قبل Arya Vadnere
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A pair $(alpha, beta)$ of simple closed geodesics on a closed and oriented hyperbolic surface $M_g$ of genus $g$ is called a filling pair if the complementary components of $alphacupbeta$ in $M_g$ are simply connected. The length of a filling pair is defined to be the sum of their individual lengths. In cite{Aou}, Aougab-Huang conjectured that the length of any filling pair on $M$ is at least $frac{m_{g}}{2}$, where $m_{g}$ is the perimeter of the regular right-angled hyperbolic $left(8g-4right)$-gon. In this paper, we prove a generalized isoperimetric inequality for disconnected regions and we prove the Aougab-Huang conjecture as a corollary.

قيم البحث

اقرأ أيضاً

In our earlier paper (K. Eda, U. Karimov, and D. Repovv{s}, emph{A construction of simply connected noncontractible cell-like two-dimensional Peano continua}, Fund. Math. textbf{195} (2007), 193--203) we introduced a cone-like space $SC(Z)$. In the p resent note we establish some new algebraic properties of $SC(Z)$.
117 - Shiv Parsad , Bidyut Sanki 2017
Let $F_g$ be a closed orientable surface of genus $g$. A set $Omega = { gamma_1, dots, gamma_s}$ of pairwise non-homotopic simple closed curves on $F_g$ is called a emph{filling system} or simply a emph{filling} of $F_g$, if $F_gsetminus Omega$ is a union of $b$ topological discs for some $bgeq 1$. A filling system is called emph{minimal}, if $b=1$. The emph{size} of a filling is defined as the number of its elements. We prove that the maximum size of a filling of $F_g$ with $b$ complementary discs is $2g+b-1$. Next, we show that for $ggeq 2, bgeq 1text{ with }(g,b) eq (2,1)$ (resp. $(g,b)=(2,1)$) and for each $2leq sleq 2g+b-1$ (resp. $3leq sleq 2g+b-1$), there exists a filling of $F_g$ of size $s$ with $b$ complementary discs. Furthermore, we study geometric intersection number of curves in a minimal filling. For $ggeq 2$, we show that for a minimal filling $Omega$ of size $s$, the emph{geometric intersection numbers} satisfy $max leftlbrace i(gamma_i, gamma_j)| i eq jrightrbraceleq 2g-s+1$, and for each such $s$ there exists a minimal filling $Omega=leftlbrace gamma_1, dots, gamma_s rightrbrace$ such that $maxleftlbrace i(gamma_i, gamma_j) | i eq jrightrbrace = 2g-s+1$.
We construct a functor $AC(-,-)$ from the category of path connected spaces $X$ with a base point $x$ to the category of simply connected spaces. The following are the main results of the paper: (i) If $X$ is a Peano continuum then $AC(X,x)$ is a cel l-like Peano continuum; (ii) If $X$ is $n-$dimensional then $AC(X, x)$ is $(n+1)-$dimensional; and (iii) For a path connected space $X$, $pi_1(X,x)$ is trivial if and only if $pi_2(AC(X, x))$ is trivial. As a corollary, $AC(S^1, x)$ is a 2-dimensional nonaspherical cell-like Peano continuum.
87 - Ciprian Manolescu 2016
We outline the proof that non-triangulable manifolds exist in any dimension greater than four. The arguments involve homology cobordism invariants coming from the Pin(2) symmetry of the Seiberg-Witten equations. We also explore a related construction , of an involutive version of Heegaard Floer homology.
113 - Gael Meigniez 2021
The classifying space for the framed Haefliger structures of codimension $q$ and class $C^r$ is $(2q-1)$-connected, for $1le rleinfty$. The corollaries deal with the existence of foliations, with the homology and the perfectness of the diffeomorphism groups, with the existence of foliated products, and of foliated bundles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا