ترغب بنشر مسار تعليمي؟ اضغط هنا

On the proportion of $p$-elements in a finite group, and a modular Jordan type theorem

152   0   0.0 ( 0 )
 نشر من قبل Gareth Tracey
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Gareth Tracey




اسأل ChatGPT حول البحث

In 1878, Jordan proved that if a finite group $G$ has a faithful representation of dimension $n$ over $mathbb{C}$, then $G$ has a normal abelian subgroup with index bounded above by a function of $n$. The same result fails if one replaces $mathbb{C}$ by a field of positive characteristic, due to the presence of large unipotent and/or Lie type subgroups. For this reason, a long-standing problem in group and representation theory has been to find the correct analogue of Jordans theorem in characteristic $p>0$. Progress has been made in a number of different directions, most notably by Brauer and Feit in 1966; by Collins in 2008; and by Larsen and Pink in 2011. With a 1968 theorem of Steinberg in mind (which shows that a significant proportion of elements in a simple group of Lie type are unipotent), we prove in this paper that if a finite group $G$ has a faithful representation over a field of characteristic $p$, then a significant proportion of the elements of $G$ must have $p$-power order. We prove similar results for permutation groups, and present a general method for counting $p$-elements in finite groups. All of our results are best possible.



قيم البحث

اقرأ أيضاً

170 - Michael J. Collins 2007
In 1878, Jordan showed that a finite subgroup of GL(n,C) contains an abelian normal subgroup whose index is bounded by a function of n alone. Previously, the author has given precise bounds. Here, we consider analogues for finite linear groups over a lgebraically closed fields of positive characteristic l. A larger normal subgroup must be taken, to eliminate unipotent subgroups and groups of Lie type and characteristic l, and we show that generically the bound is similar to that in characteristic 0 - being (n+1)!, or (n+2)! when l divides (n+2) - given by the faithful representations of minimal degree of the symmetric groups. A complete answer for the optimal bounds is given for all degrees n and every characteristic l.
In this paper we measure how efficiently a finite simple group $G$ is generated by its elements of order $p$, where $p$ is a fixed prime. This measure, known as the $p$-width of $G$, is the minimal $kin mathbb{N}$ such that any $gin G$ can be written as a product of at most $k$ elements of order $p$. Using primarily character theoretic methods, we sharply bound the $p$-width of some low rank families of Lie type groups, as well as the simple alternating and sporadic groups.
We define the superclasses for a classical finite unipotent group $U$ of type $B_{n}(q)$, $C_{n}(q)$, or $D_{n}(q)$, and show that, together with the supercharacters defined in a previous paper, they form a supercharacter theory. In particular, we pr ove that the supercharacters take a constant value on each superclass, and evaluate this value. As a consequence, we obtain a factorization of any superclass as a product of elementary superclasses. In addition, we also define the space of superclass functions, and prove that it is spanned by the supercharacters. As as consequence, we (re)obtain the decomposition of the regular character as an orthogonal linear combination of supercharacters. Finally, we define the supercharacter table of $U$, and prove various orthogonality relations for supercharacters (similar to the well-known orthogonality relations for irreducible characters).
We give a short proof of the fact that if all characteristic p simple modules of the finite group G have dimension less than p, then G has a normal Sylow p-subgroup.
We define and study supercharacters of the classical finite unipotent groups of symplectic and orthogonal types (over any finite field of odd characteristic). We show how supercharacters for groups of those types can be obtained by restricting the su percharacter theory of the finite unitriangular group, and prove that supercharacters are orthogonal and provide a partition of the set of all irreducible characters. We also describe all irreducible characters of maximum degree in terms of the root system, and show how they can be obtained as constituents of particular supercharacters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا