ترغب بنشر مسار تعليمي؟ اضغط هنا

From Finite to Countable-Armed Bandits

63   0   0.0 ( 0 )
 نشر من قبل Anand Kalvit
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a stochastic bandit problem with countably many arms that belong to a finite set of types, each characterized by a unique mean reward. In addition, there is a fixed distribution over types which sets the proportion of each type in the population of arms. The decision maker is oblivious to the type of any arm and to the aforementioned distribution over types, but perfectly knows the total number of types occurring in the population of arms. We propose a fully adaptive online learning algorithm that achieves O(log n) distribution-dependent expected cumulative regret after any number of plays n, and show that this order of regret is best possible. The analysis of our algorithm relies on newly discovered concentration and convergence properties of optimism-based policies like UCB in finite-armed bandit problems with zero gap, which may be of independent interest.



قيم البحث

اقرأ أيضاً

We introduce a new class of reinforcement learning methods referred to as {em episodic multi-armed bandits} (eMAB). In eMAB the learner proceeds in {em episodes}, each composed of several {em steps}, in which it chooses an action and observes a feedb ack signal. Moreover, in each step, it can take a special action, called the $stop$ action, that ends the current episode. After the $stop$ action is taken, the learner collects a terminal reward, and observes the costs and terminal rewards associated with each step of the episode. The goal of the learner is to maximize its cumulative gain (i.e., the terminal reward minus costs) over all episodes by learning to choose the best sequence of actions based on the feedback. First, we define an {em oracle} benchmark, which sequentially selects the actions that maximize the expected immediate gain. Then, we propose our online learning algorithm, named {em FeedBack Adaptive Learning} (FeedBAL), and prove that its regret with respect to the benchmark is bounded with high probability and increases logarithmically in expectation. Moreover, the regret only has polynomial dependence on the number of steps, actions and states. eMAB can be used to model applications that involve humans in the loop, ranging from personalized medical screening to personalized web-based education, where sequences of actions are taken in each episode, and optimal behavior requires adapting the chosen actions based on the feedback.
We propose an online algorithm for cumulative regret minimization in a stochastic multi-armed bandit. The algorithm adds $O(t)$ i.i.d. pseudo-rewards to its history in round $t$ and then pulls the arm with the highest average reward in its perturbed history. Therefore, we call it perturbed-history exploration (PHE). The pseudo-rewards are carefully designed to offset potentially underestimated mean rewards of arms with a high probability. We derive near-optimal gap-dependent and gap-free bounds on the $n$-round regret of PHE. The key step in our analysis is a novel argument that shows that randomized Bernoulli rewards lead to optimism. Finally, we empirically evaluate PHE and show that it is competitive with state-of-the-art baselines.
We consider a resource-aware variant of the classical multi-armed bandit problem: In each round, the learner selects an arm and determines a resource limit. It then observes a corresponding (random) reward, provided the (random) amount of consumed re sources remains below the limit. Otherwise, the observation is censored, i.e., no reward is obtained. For this problem setting, we introduce a measure of regret, which incorporates the actual amount of allocated resources of each learning round as well as the optimality of realizable rewards. Thus, to minimize regret, the learner needs to set a resource limit and choose an arm in such a way that the chance to realize a high reward within the predefined resource limit is high, while the resource limit itself should be kept as low as possible. We derive the theoretical lower bound on the cumulative regret and propose a learning algorithm having a regret upper bound that matches the lower bound. In a simulation study, we show that our learning algorithm outperforms straightforward extensions of standard multi-armed bandit algorithms.
We consider a generalization of stochastic bandits where the set of arms, $cX$, is allowed to be a generic measurable space and the mean-payoff function is locally Lipschitz with respect to a dissimilarity function that is known to the decision maker . Under this condition we construct an arm selection policy, called HOO (hierarchical optimistic optimization), with improved regret bounds compared to previous results for a large class of problems. In particular, our results imply that if $cX$ is the unit hypercube in a Euclidean space and the mean-payoff function has a finite number of global maxima around which the behavior of the function is locally continuous with a known smoothness degree, then the expected regret of HOO is bounded up to a logarithmic factor by $sqrt{n}$, i.e., the rate of growth of the regret is independent of the dimension of the space. We also prove the minimax optimality of our algorithm when the dissimilarity is a metric. Our basic strategy has quadratic computational complexity as a function of the number of time steps and does not rely on the doubling trick. We also introduce a modified strategy, which relies on the doubling trick but runs in linearithmic time. Both results are improvements with respect to previous approaches.
We study incentivized exploration for the multi-armed bandit (MAB) problem where the players receive compensation for exploring arms other than the greedy choice and may provide biased feedback on reward. We seek to understand the impact of this drif ted reward feedback by analyzing the performance of three instantiations of the incentivized MAB algorithm: UCB, $varepsilon$-Greedy, and Thompson Sampling. Our results show that they all achieve $mathcal{O}(log T)$ regret and compensation under the drifted reward, and are therefore effective in incentivizing exploration. Numerical examples are provided to complement the theoretical analysis.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا