ﻻ يوجد ملخص باللغة العربية
This paper presents a review of ideas that interconnect Astrochemistry and Galactic Dynamics. Since these two areas are vast and not recent, each one has already been covered separately by several reviews. After a general historical introduction, and a needed quick review of processes like the stellar nucleosynthesis which gives the base to understand the interstellar formation of simple chemical compounds (H2, CO, NH3 and H2O), we focus on a number of topics which are at the crossing of the two areas, Dynamics and Astrochemistry. Astrochemistry is a flourishing field which intends to study the presence and formation of molecules as well as the influence of them into the structure, evolution and dynamics of astronomical objects. The progress in the knowledge on the existence of new complex molecules and of their process of formation originates from the observational, experimental and theoretical areas which compose the field. The interfacing areas include star formation, protoplanetary disks, the role of the spiral arms and the chemical abundance gradients in the galactic disk. It often happens that the physical conditions in some regions of the ISM are only revealed by means of molecular observations. To organise a classification of chemical evolution processes, we discuss about how astrochemistry can act in three different contexts: i. the chemistry of the early universe, including external galaxies, ii. star forming regions, and iii. AGB stars and circumstellar envelopes. We mention that our research is stimulated by plans for instruments and projects, such as the on-going LLAMA, which consists in the construction of a 12m sub-mm radio telescope in the Andes. Thus, modern and new facilities can play a key role in new discoveries not only in astrochemistry but also in radio astronomy and related areas. Furthermore, the research of the origin of life is also a stimulating perspective.
We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent
At the low temperatures ($sim$10 K) and high densities ($sim$100,000 H$_2$ molecules per cc) of molecular cloud cores and protostellar envelopes, a large amount of molecular species (in particular those containing C and O) freeze-out onto dust grain
The interstellar medium is characterized by a rich and diverse chemistry. Many of its complex organic molecules are proposed to form through radical chemistry in icy grain mantles. Radicals form readily when interstellar ices (composed of water and o
In their evolution, star-forming galaxies are known to follow scaling relations between some fundamental physical quantities, such as the mass-metallicity and the main sequence relations. We aim at studying the evolution of galaxies that, at a given
Planets form and obtain their compositions in disks of gas and dust around young stars. The chemical compositions of these planet-forming disks regulate all aspects of planetary compositions from bulk elemental inventories to access to water and reac