ترغب بنشر مسار تعليمي؟ اضغط هنا

Deuterated forms of H${_3^+}$ and their importance in astrochemistry

299   0   0.0 ( 0 )
 نشر من قبل Paola Caselli
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At the low temperatures ($sim$10 K) and high densities ($sim$100,000 H$_2$ molecules per cc) of molecular cloud cores and protostellar envelopes, a large amount of molecular species (in particular those containing C and O) freeze-out onto dust grain surfaces. It is in these regions that the deuteration of H$_3^+$ becomes very efficient, with a sharp abundance increase of H$_2$D$^+$ and D$_2$H$^+$. The multi-deuterated forms of H$_3^+$ participate in an active chemistry: (i) their collision with neutral species produces deuterated molecules such as the commonly observed N$_2$D$^+$, DCO$^+$ and multi-deuterated NH$_3$; (ii) their dissociative electronic recombination increases the D/H atomic ratio by several orders of magnitude above the D cosmic abundance, thus allowing deuteration of molecules (e.g. CH$_3$OH and H$_2$O) on the surface of dust grains. Deuterated molecules are the main diagnostic tools of dense and cold interstellar clouds, where the first steps toward star and protoplanetary disk formation take place. Recent observations of deuterated molecules are reviewed and discussed in view of astrochemical models inclusive of spin-state chemistry. We present a new comparison between models based on complete scrambling (to calculate branching ratio tables for reactions between chemical species that include protons and/or deuterons) and models based on non-scrambling (proton hop) methods, showing that the latter best agree with observations of NH$_3$ deuterated isotopologues and their different nuclear spin symmetry states.



قيم البحث

اقرأ أيضاً

Probing the gas and dust in proto-planetary disks is central for understanding the process of planet formation. In disks surrounding solar type protostars, the bulk of the disk mass resides in the outer midplane, which is cold ($leq$20 K), dense ($ge q 10^7$ cm$^{-3}$) and depleted of CO. Observing the disk midplane has proved, therefore, to be a formidable challenge. Ceccarelli et al. (2004) detected H$_2$D$^+$ emission in a proto-planetary disk and claimed that it probes the midplane gas. Indeed, since all heavy-elements bearing molecules condense out onto the grain mantles, the most abundant ions in the disk midplane are predicted to be H$_3^+$ and its isotopomers. In this article, we carry out a theoretical study of the chemical structure of the outer midplane of proto-planetary disks. Using a self-consistent physical model for the flaring disk structure, we compute the abundances of H$_3^+$ and its deuterated forms across the disk midplane. We also provide the average column densities across the disk of H$_3^+$, H$_2$D$^+$, HD$_2^+$ and D$_3^+$, and line intensities of the ground transitions of the ortho and para forms of H$_2$D$^+$ and HD$_2^+$ respectively. We discuss how the results depend on the cosmic ray ionization rate, dust-to-gas ratio and average grain radius, and general stellar/disk parameters. An important factor is the poorly understood freeze-out of N$_2$ molecules onto grains, which we investigate in depth. We finally summarize the diagnostic values of observations of the H$_3^+$ isotopomers.
Young massive stars are usually found embedded in dense massive molecular clumps and are known for being highly obscured and distant. During their formation process, deuteration is regarded as a potentially good indicator of the very early formation stages. In this work, we test the observability of the ground-state transition of ortho-H$_2$D$^+$ $J_{rm {K_a, K_c}} = 1_{10}$-$1_{11} $ by performing interferometric and single-dish synthetic observations using magneto-hydrodynamic simulations of high-mass collapsing molecular cores, including deuteration chemistry. We studied different evolutionary times and source distances (from 1 to 7 kpc) to estimate the information loss when comparing the column densities inferred from the synthetic observations to the column densities in the model. We mimicked single-dish observations considering an APEX-like beam and interferometric observations using CASA and assuming the most compact configuration for the ALMA antennas. We found that, for centrally concentrated density distributions, the column densities are underestimated by about 51% in the case of high-resolution ALMA observations ($leqslant$1) and up to 90% for APEX observations (17). Interferometers retrieve values closer to the real ones, however, their finite spatial sampling results in the loss of contribution from large-scale structures due to the lack of short baselines. We conclude that, the emission of o-H$_2$D$^+$ in distant massive dense cores is faint and would require from $sim$1 to $sim$7 hours of observation at distances of 1 and 7 kpc, respectively, to achieve a 14$sigma$ detection in the best case scenario. Additionally, the column densities derived from such observations will certainly be affected by beam dilution in the case of single-dishes and spatial filtering in the case of interferometers.
We analyze hydrodynamic simulations of turbulent, star-forming molecular clouds that are post-processed with the photo-dissociation region astrochemistry code 3D-PDR. We investigate the sensitivity of 15 commonly applied turbulence statistics to post -processing assumptions, namely variations in gas temperature, abundance and external radiation field. We produce synthetic $^{12}$CO(1-0) and CI($^{3}$P$_{1}$-$^{3}$P$_{0}$) observations and examine how the variations influence the resulting emission distributions. To characterize differences between the datasets, we perform statistical measurements, identify diagnostics sensitive to our chemistry parameters, and quantify the statistic responses by using a variety of distance metrics. We find that multiple turbulent statistics are sensitive not only to the chemical complexity but also to the strength of the background radiation field. The statistics with meaningful responses include principal component analysis, spatial power spectrum and bicoherence. A few of the statistics, such as the velocity coordinate spectrum, are primarily sensitive to the type of tracer being utilized, while others, like the delta-variance, strongly respond to the background radiation field. Collectively, these findings indicate that more realistic chemistry impacts the responses of turbulent statistics and is necessary for accurate statistical comparisons between models and observed molecular clouds.
Methyl formate, HCOOCH$_3$, and many of its isotopologues have been detected in astrophysical regions with considerable abundances. However, the recipe for the formation of this molecule and its isotopologues is not yet known. In this work, we attemp t to investigate, theoretically, the successful recipe for the formation of interstellar HCOOCH$_3$ and its deuterated isotopologues. We used the gas-grain chemical model, UCLCHEM, to examine the possible routes of formation of methyl formate on grain surfaces and in the gas-phase in low-mass star-forming regions. Our models show that radical-radical association on grains are necessary to explain the observed abundance of DCOOCH$_3$ in the protostar IRAS~16293--2422. H-D substitution reactions on grains significantly enhance the abundances of HCOOCHD$_2$, DCOOCHD$_2$, and HCOOCD$_3$. The observed abundance of HCOOCHD$_2$ in IRAS 16293--2422 can only be reproduced if H-D substitution reactions are taken into account. However, HCOOCH$_2$D remain underestimated in all of our models. The deuteration of methyl formate appears to be more complex than initially thought. Additional studies, both experimentally and theoretically, are needed for a better understanding of the interstellar formation of these species.
We report the first detection in space of the single deuterated isotopologue of methylcyanoacetylene, CH$_2$DC$_3$N. A total of fifteen rotational transitions, with $J$ = 8-12 and $K_a$ = 0 and 1, were identified for this species in TMC-1 in the 31.0 -50.4 GHz range using the Yebes 40m radio telescope. The observed frequencies were used to derive for the first time the spectroscopic parameters of this deuterated isotopologue. We derive a column density of $(8.0pm 0.4) times 10^{10}$ cm$^{-2}$. The abundance ratio between CH$_3$C$_3$N and CH$_2$DC$_3$N is $sim$22. We also theoretically computed the principal spectroscopic constants of $^{13}$C isotopologues of CH$_3$C$_3$N and CH$_3$C$_4$H and those of the deuterated isotopologues of CH$_3$C$_4$H for which we could expect a similar degree of deuteration enhancement. However, we have not detected either CH$_2$DC$_4$H nor CH$_3$C$_4$D nor any $^{13}$C isotopologue. The different observed deuterium ratios in TMC-1 are reasonably accounted for by a gas phase chemical model where the low temperature conditions favor deuteron transfer through reactions with H$_2$D$^+$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا